Some checks are pending
CodeQL / Analyze (csharp) (push) Waiting to run
CodeQL / Analyze (python) (push) Waiting to run
dotnet-build-and-test / paths-filter (push) Waiting to run
dotnet-build-and-test / dotnet-build-and-test (Debug, windows-latest, net9.0) (push) Blocked by required conditions
dotnet-build-and-test / dotnet-build-and-test (Release, integration, true, ubuntu-latest, net10.0) (push) Blocked by required conditions
dotnet-build-and-test / dotnet-build-and-test (Release, integration, true, windows-latest, net472) (push) Blocked by required conditions
dotnet-build-and-test / dotnet-build-and-test (Release, ubuntu-latest, net8.0) (push) Blocked by required conditions
dotnet-build-and-test / dotnet-build-and-test-check (push) Blocked by required conditions
1897 lines
52 KiB
Markdown
1897 lines
52 KiB
Markdown
---
|
||
# These are optional elements. Feel free to remove any of them.
|
||
status: {proposed}
|
||
contact: {dmytrostruk}
|
||
date: {2025-06-23}
|
||
deciders: {stephentoub, markwallace-microsoft, RogerBarreto, westey-m}
|
||
consulted: {}
|
||
informed: {}
|
||
---
|
||
|
||
# Agent Tools
|
||
|
||
## Context and Problem Statement
|
||
|
||
AI agents increasingly rely on diverse tools like function calling, file search, and computer use, but integrating each tool often requires custom, inconsistent implementations. A unified abstraction for tool usage is essential to simplify development, ensure consistency, and enable scalable, reliable agent performance across varied tasks.
|
||
|
||
## Decision Drivers
|
||
|
||
- The abstraction must provide a consistent API for all tools to reduce complexity and improve developer experience.
|
||
- The design should allow seamless integration of new tools without significant changes to existing implementations.
|
||
- Robust mechanisms for managing tool-specific errors and timeouts are required for reliability.
|
||
- The abstraction should support a fallback approach to directly use unsupported or custom tools, bypassing standard abstractions when necessary.
|
||
|
||
## Considered Options
|
||
|
||
### Option 1: Use ChatOptions.RawRepresentationFactory for Provider-Specific Tools
|
||
|
||
#### Description
|
||
|
||
Utilize the existing `ChatOptions.RawRepresentationFactory` to inject provider-specific tools (e.g., for an AI provider like Foundry) without extending the `AITool` abstract class from `Microsoft.Extensions.AI`.
|
||
|
||
```csharp
|
||
ChatOptions options = new()
|
||
{
|
||
RawRepresentationFactory = _ => new ResponseCreationOptions()
|
||
{
|
||
Tools = { ... }, // backend-specific tools
|
||
},
|
||
};
|
||
```
|
||
|
||
#### Pros
|
||
|
||
- No development work needed; leverages existing `Microsoft.Extensions.AI` functionality.
|
||
- Flexible for integrating tools from any AI provider without modifying the `AITool`.
|
||
- Minimal codebase changes, reducing the risk of introducing errors.
|
||
|
||
#### Cons
|
||
|
||
- Requires a separate mechanism to register tools, complicating the developer experience.
|
||
- Developers must know the specific AI provider (via `IChatClient`) to configure tools, reducing abstraction.
|
||
- Inconsistent with the `AITool` abstraction, leading to fragmented tool usage patterns.
|
||
- Poor tool discoverability, as they are not integrated into the `AITool` ecosystem.
|
||
|
||
### Option 2: Add Provider-Specific AITool-Derived Types in Provider Packages
|
||
|
||
#### Description
|
||
|
||
Create provider-specific tool types that inherit from the `AITool` abstract class within each AI provider’s package (e.g., a Foundry package could include Foundry-specific tools). The provider’s `IChatClient` implementation would natively recognize and process these `AITool`-derived types, eliminating the need for a separate registration mechanism.
|
||
|
||
#### Pros
|
||
|
||
- Integrates with the `AITool` abstract class, providing a consistent developer experience within the `Microsoft.Extensions.AI`.
|
||
- Eliminates the need for a special registration mechanism like `RawRepresentationFactory`.
|
||
- Enhances type safety and discoverability for provider-specific tools.
|
||
- Aligns with the standardized interface driver by leveraging `AITool` as the base class.
|
||
|
||
#### Cons
|
||
|
||
- Developers must know they are targeting a specific AI provider to select the appropriate `AITool`-derived types.
|
||
- Increases maintenance overhead for each provider’s package to support and update these tool types.
|
||
- Leads to fragmentation, as each provider requires its own set of `AITool`-derived types.
|
||
- Potential for duplication if multiple providers implement similar tools with different `AITool` derivatives.
|
||
|
||
### Option 3: Create Generic AITool-Derived Abstractions in M.E.AI.Abstractions
|
||
|
||
#### Description
|
||
|
||
Develop generic tool abstractions that inherit from the `AITool` abstract class in the `M.E.AI.Abstractions` package (e.g., `HostedCodeInterpreterTool`, `HostedWebSearchTool`). These abstractions map to common tool concepts across multiple AI providers, with provider-specific implementations handled internally.
|
||
|
||
#### Pros
|
||
|
||
- Provides a standardized `AITool`-based interface across AI providers, improving consistency and developer experience.
|
||
- Reduces the need for provider-specific knowledge by abstracting tool implementations.
|
||
- Highly extensible, supporting new `AITool`-derived types for common tool concepts (e.g., server-side MCP tools).
|
||
|
||
#### Cons
|
||
|
||
- Complex mapping logic needed to support diverse provider implementations.
|
||
- May not cover niche or provider-specific tools, necessitating a fallback mechanism.
|
||
|
||
### Option 4: Hybrid Approach Combining Options 1, 2, and 3
|
||
|
||
#### Description
|
||
|
||
Implement a hybrid strategy where common tools use generic `AITool`-derived abstractions in `M.E.AI.Abstractions` (Option 3), provider-specific tools (e.g., for Foundry) are implemented as `AITool`-derived types in their respective provider packages (Option 2), and rare or unsupported tools fall back to `ChatOptions.RawRepresentationFactory` (Option 1).
|
||
|
||
#### Pros
|
||
|
||
- Balances developer experience and flexibility by using the best `AITool`-based approach for each tool type.
|
||
- Supports standardized `AITool` interfaces for common tools while allowing provider-specific and breakglass mechanisms.
|
||
- Extensible and scalable, accommodating both current and future tool requirements across AI providers.
|
||
- Addresses ancillary and intermediate content (e.g., MCP permissions) with generic types.
|
||
|
||
#### Cons
|
||
|
||
- Increases complexity by managing multiple `AITool` integration approaches within the same system.
|
||
- Requires clear documentation to guide developers on when to use each option.
|
||
- Potential for inconsistency if boundaries between approaches are not well-defined.
|
||
- Higher maintenance burden to support and test multiple tool integration paths.
|
||
|
||
## More information
|
||
|
||
### AI Agent Tool Types Availability
|
||
|
||
Tool Type | Azure AI Foundry Agent Service | OpenAI Assistant API | OpenAI ChatCompletion API | OpenAI Responses API | Amazon Bedrock Agents | Google | Anthropic | Description
|
||
-- | -- | -- | -- | -- | -- | -- | -- | --
|
||
Function Calling | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | Enables custom, stateless functions to define specific agent behaviors.
|
||
Code Interpreter | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | Allows agents to execute code for tasks like data analysis or problem-solving.
|
||
Search and Retrieval | ✅ (File Search, Azure AI Search) | ✅ (File Search) | ❌ | ✅ (File Search) | ✅ (Knowledge Bases) | ✅ (Vertex AI Search) | ❌ | Enables agents to search and retrieve information from files, knowledge bases, or enterprise search systems.
|
||
Web Search | ✅ (Bing Search) | ❌ | ✅ | ✅ | ❌ | ✅ (Google Search) | ✅ | Provides real-time access to internet-based content using search engines or web APIs for dynamic, up-to-date information.
|
||
Remote MCP Servers | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ✅ | Gives the model access to new capabilities via Model Context Protocol servers.
|
||
Computer Use | ❌ | ❌ | ❌ | ✅ | ✅ (ANTHROPIC.Computer) | ❌ | ✅ | Creates agentic workflows that enable a model to control a computer interface.
|
||
OpenAPI Spec Tool | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | Integrates existing OpenAPI specifications for service APIs.
|
||
Stateful Functions | ✅ (Azure Functions) | ❌ | ❌ | ❌ | ✅ (AWS Lambda) | ❌ | ❌ | Supports custom, stateful functions for complex agent actions.
|
||
Text Editor | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | Allows agents to view and modify text files for debugging or editing purposes.
|
||
Azure Logic Apps | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | Low-code/no-code solution to add workflows to AI agents.
|
||
Microsoft Fabric | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | Enables agents to interact with data in Microsoft Fabric for insights.
|
||
Image Generation | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | Generates or edits images using GPT image.
|
||
|
||
### API Comparison
|
||
|
||
#### Function Calling
|
||
<details>
|
||
<summary>Azure AI Foundry Agent Service</summary>
|
||
Source: <a href="https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/function-calling?pivots=rest">https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/function-calling?pivots=rest</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"description": "{string}",
|
||
"name": "{string}",
|
||
"parameters": "{JSON Schema object}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "function",
|
||
"function": {
|
||
"name": "{string}",
|
||
"arguments": "{JSON object}",
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI Assistant API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/assistants/tools/function-calling">https://platform.openai.com/docs/assistants/tools/function-calling</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"description": "{string}",
|
||
"name": "{string}",
|
||
"parameters": "{JSON Schema object}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "function",
|
||
"function": {
|
||
"name": "{string}",
|
||
"arguments": "{JSON object}",
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI ChatCompletion API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/guides/function-calling?api-mode=chat">https://platform.openai.com/docs/guides/function-calling?api-mode=chat</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "function",
|
||
"function": {
|
||
"description": "{string}",
|
||
"name": "{string}",
|
||
"parameters": "{JSON Schema object}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
[
|
||
{
|
||
"id": "{string}",
|
||
"type": "function",
|
||
"function": {
|
||
"name": "{string}",
|
||
"arguments": "{JSON object}",
|
||
}
|
||
}
|
||
]
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI Responses API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/guides/function-calling?api-mode=responses">https://platform.openai.com/docs/guides/function-calling?api-mode=responses</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "function",
|
||
"description": "{string}",
|
||
"name": "{string}",
|
||
"parameters": "{JSON Schema object}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
[
|
||
{
|
||
"id": "{string}",
|
||
"call_id": "{string}",
|
||
"type": "function_call",
|
||
"name": "{string}",
|
||
"arguments": "{JSON object}"
|
||
}
|
||
]
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Amazon Bedrock Agents</summary>
|
||
Source: <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax">https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax</a>
|
||
|
||
CreateAgentActionGroup Request:
|
||
```json
|
||
{
|
||
"functionSchema": {
|
||
"name": "{string}",
|
||
"description": "{string}",
|
||
"parameters": {
|
||
"type": "{string | number | integer | boolean | array}",
|
||
"description": "{string}",
|
||
"required": "{boolean}"
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"invocationInputs": [
|
||
{
|
||
"functionInvocationInput": {
|
||
"actionGroup": "{string}",
|
||
"function": "{string}",
|
||
"parameters": [
|
||
{
|
||
"name": "{string}",
|
||
"type": "{string | number | integer | boolean | array}",
|
||
"value": {}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Google</summary>
|
||
Source: <a href="https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling#rest">https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling#rest</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"functionDeclarations": [
|
||
{
|
||
"name": "{string}",
|
||
"description": "{string}",
|
||
"parameters": "{JSON Schema object}"
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"content": {
|
||
"role": "model",
|
||
"parts": [
|
||
{
|
||
"functionCall": {
|
||
"name": "{string}",
|
||
"args": {
|
||
"{argument_name}": {}
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Anthropic</summary>
|
||
Source: <a href="https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/overview">https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/overview</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"name": "{string}",
|
||
"description": "{string}",
|
||
"input_schema": "{JSON Schema object}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"id": "{string}",
|
||
"model": "{string}",
|
||
"stop_reason": "tool_use",
|
||
"role": "assistant",
|
||
"content": [
|
||
{
|
||
"type": "text",
|
||
"text": "{string}"
|
||
},
|
||
{
|
||
"type": "tool_use",
|
||
"id": "{string}",
|
||
"name": "{string}",
|
||
"input": {
|
||
"argument_name": {}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
#### Commonalities
|
||
|
||
- **Standardized Tool Definition**: All providers use a JSON-based structure for defining tools, including a `type` field (commonly "function") and a `function` object with `name`, `description`, and `parameters` (often following JSON Schema).
|
||
- **Tool Call Response Structure**: Responses typically include a list of tool calls with an `id`, `type`, and details about the function called (e.g., `name` and `arguments`), enabling consistent handling of function invocations.
|
||
- **JSON Schema for Parameters**: Parameters for functions are defined using JSON Schema objects across most providers, facilitating a unified approach to parameter validation and processing.
|
||
- **Extensibility**: The structure allows for additional metadata or fields (e.g., `call_id`, `actionGroup`), suggesting potential for abstraction to support provider-specific extensions while maintaining core compatibility.
|
||
|
||
<hr>
|
||
|
||
#### Code Interpreter
|
||
<details>
|
||
<summary>Azure AI Foundry Agent Service</summary>
|
||
<p>Source: <a href="https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/code-interpreter-samples?pivots=rest-api">https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/code-interpreter-samples?pivots=rest-api</a></p>
|
||
|
||
<p>.NET Support: ✅</p>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "code_interpreter"
|
||
}
|
||
],
|
||
"tool_resources": {
|
||
"code_interpreter": {
|
||
"file_ids": ["{string}"],
|
||
"data_sources": [
|
||
{
|
||
"type": {
|
||
"id_asset": "{string}",
|
||
"uri_asset": "{string}"
|
||
},
|
||
"uri": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "code_interpreter",
|
||
"code_interpreter": {
|
||
"input": "{string}",
|
||
"outputs": [
|
||
{
|
||
"type": "image",
|
||
"file_id": "{string}"
|
||
},
|
||
{
|
||
"type": "logs",
|
||
"logs": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI Assistant API</summary>
|
||
<p>Source: <a href="https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/code-interpreter-samples?pivots=rest-api">https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/code-interpreter-samples?pivots=rest-api</a></p>
|
||
|
||
<p>.NET Support: ✅</p>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "code_interpreter"
|
||
}
|
||
],
|
||
"tool_resources": {
|
||
"code_interpreter": {
|
||
"file_ids": ["{string}"]
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "code",
|
||
"code": {
|
||
"input": "{string}",
|
||
"outputs": [
|
||
{
|
||
"type": "logs",
|
||
"logs": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI Responses API</summary>
|
||
<p>Source: <a href="https://platform.openai.com/docs/guides/tools-code-interpreter">https://platform.openai.com/docs/guides/tools-code-interpreter</a></p>
|
||
|
||
<p>.NET Support: ❌ (currently in development: <a href="https://github.com/openai/openai-dotnet/issues/448">GitHub issue</a>)</p>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "code_interpreter",
|
||
"container": { "type": "auto" }
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
[
|
||
{
|
||
"id": "{string}",
|
||
"code": "{string}",
|
||
"type": "code_interpreter_call",
|
||
"status": "{string}",
|
||
"container_id": "{string}",
|
||
"results": [
|
||
{
|
||
"type": "logs",
|
||
"logs": "{string}"
|
||
},
|
||
{
|
||
"type": "files",
|
||
"files": [
|
||
{
|
||
"file_id": "{string}",
|
||
"mime_type": "{string}"
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
]
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Amazon Bedrock Agents</summary>
|
||
<p>Source: <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/agents-enable-code-interpretation.html">https://docs.aws.amazon.com/bedrock/latest/userguide/agents-enable-code-interpretation.html</a></p>
|
||
|
||
<p>.NET Support: ❌ (Amazon SDK has IChatClient implementation but lacks ChatOptions.RawRepresentationFactory)</p>
|
||
|
||
CreateAgentActionGroup Request:
|
||
```json
|
||
{
|
||
"actionGroupName": "{string}",
|
||
"parentActionGroupSignature": "AMAZON.CodeInterpreter",
|
||
"actionGroupState": "ENABLED"
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"trace": {
|
||
"orchestrationTrace": {
|
||
"invocationInput": {
|
||
"invocationType": "ACTION_GROUP_CODE_INTERPRETER",
|
||
"codeInterpreterInvocationInput": {
|
||
"code": "{string}",
|
||
"files": ["{string}"]
|
||
}
|
||
},
|
||
"observation": {
|
||
"codeInterpreterInvocationOutput": {
|
||
"executionError": "{string}",
|
||
"executionOutput": "{string}",
|
||
"executionTimeout": "{boolean}",
|
||
"files": ["{string}"],
|
||
"metadata": {
|
||
"clientRequestId": "{string}",
|
||
"endTime": "{timestamp}",
|
||
"operationTotalTimeMs": "{long}",
|
||
"startTime": "{timestamp}",
|
||
"totalTimeMs": "{long}",
|
||
"usage": {
|
||
"inputTokens": "{integer}",
|
||
"outputTokens": "{integer}"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Google</summary>
|
||
<p>Source: <a href="https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution#googlegenaisdk_tools_code_exec_with_txt-drest">https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution#googlegenaisdk_tools_code_exec_with_txt-drest</a></p>
|
||
|
||
<p>.NET Support: ❌ (official SDK lacks IChatClient implementation.)</p>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"contents": {
|
||
"role": "{string}",
|
||
"parts": {
|
||
"text": "{string}"
|
||
}
|
||
},
|
||
"tools": [
|
||
{
|
||
"codeExecution": {}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"content": {
|
||
"role": "model",
|
||
"parts": [
|
||
{
|
||
"executableCode": {
|
||
"language": "{string}",
|
||
"code": "{string}"
|
||
}
|
||
},
|
||
{
|
||
"codeExecutionResult": {
|
||
"outcome": "{string}",
|
||
"output": "{string}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Anthropic</summary>
|
||
<p>Source: <a href="https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/code-execution-tool">https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/code-execution-tool</a></p>
|
||
|
||
<p>
|
||
.NET Support: ❌ <br>
|
||
<ul>
|
||
<li><a href="https://github.com/tghamm/Anthropic.SDK">Anthropic.SDK</a> - uses `code_interpreter` instead of `code_execution` and lacks a possibility to specify file id.</li>
|
||
<li><a href="https://github.com/tryAGI/Anthropic">Anthropic by tryAGI</a> - has `code_execution` implementation, but it's in beta and can't be used as a tool.</li>
|
||
</ul>
|
||
</p>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"name": "code_execution",
|
||
"type": "code_execution_20250522"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"role": "assistant",
|
||
"container": {
|
||
"id": "{string}",
|
||
"expires_at": "{timestamp}"
|
||
},
|
||
"content": [
|
||
{
|
||
"type": "server_tool_use",
|
||
"id": "{string}",
|
||
"name": "code_execution",
|
||
"input": {
|
||
"code": "{string}"
|
||
}
|
||
},
|
||
{
|
||
"type": "code_execution_tool_result",
|
||
"tool_use_id": "{string}",
|
||
"content": {
|
||
"type": "code_execution_result",
|
||
"stdout": "{string}",
|
||
"stderr": "{string}",
|
||
"return_code": "{integer}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
#### Commonalities
|
||
|
||
- **Tool Type Specification**: Providers consistently define a `code_interpreter` tool type within the `tools` array, indicating support for code execution capabilities.
|
||
- **Input and Output Handling**: Requests include mechanisms to specify code input (e.g., `input` or `code` fields), and responses return execution outputs, such as logs or files, in a structured format.
|
||
- **File Resource Support**: Most providers allow associating files with the code interpreter (e.g., via `file_ids` or `files`), enabling data input/output for code execution.
|
||
- **Execution Metadata**: Responses often include metadata about the execution process (e.g., `status`, `logs`, or `executionError`), which can be abstracted for standardized error handling and result processing.
|
||
|
||
<hr>
|
||
|
||
#### Search and Retrieval
|
||
<details>
|
||
<summary>Azure AI Foundry Agent Service</summary>
|
||
Source: <a href="https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/file-search-upload-files?pivots=rest">https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/file-search-upload-files?pivots=rest</a>
|
||
|
||
File Search Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "file_search"
|
||
}
|
||
],
|
||
"tool_resources": {
|
||
"file_search": {
|
||
"vector_store_ids": ["{string}"],
|
||
"vector_stores": [
|
||
{
|
||
"name": "{string}",
|
||
"configuration": {
|
||
"data_sources": [
|
||
{
|
||
"type": {
|
||
"id_asset": "{string}",
|
||
"uri_asset": "{string}"
|
||
},
|
||
"uri": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
File Search Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "file_search",
|
||
"file_search": {
|
||
"ranking_options": {
|
||
"ranker": "{string}",
|
||
"score_threshold": "{float}"
|
||
},
|
||
"results": [
|
||
{
|
||
"file_id": "{string}",
|
||
"file_name": "{string}",
|
||
"score": "{float}",
|
||
"content": [
|
||
{
|
||
"text": "{string}",
|
||
"type": "{string}"
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Azure AI Search Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "azure_ai_search"
|
||
}
|
||
],
|
||
"tool_resources": {
|
||
"azure_ai_search": {
|
||
"indexes": [
|
||
{
|
||
"index_connection_id": "{string}",
|
||
"index_name": "{string}",
|
||
"query_type": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
Azure AI Search Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "azure_ai_search",
|
||
"azure_ai_search": {} // From documentation: Reserved for future use
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI Assistant API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/assistants/tools/file-search">https://platform.openai.com/docs/assistants/tools/file-search</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "file_search"
|
||
}
|
||
],
|
||
"tool_resources": {
|
||
"file_search": {
|
||
"vector_store_ids": ["string"]
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "file_search",
|
||
"file_search": {
|
||
"ranking_options": {
|
||
"ranker": "{string}",
|
||
"score_threshold": "{float}"
|
||
},
|
||
"results": [
|
||
{
|
||
"file_id": "{string}",
|
||
"file_name": "{string}",
|
||
"score": "{float}",
|
||
"content": [
|
||
{
|
||
"text": "{string}",
|
||
"type": "{string}"
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI Responses API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/api-reference/responses/create">https://platform.openai.com/docs/api-reference/responses/create</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "file_search"
|
||
}
|
||
],
|
||
"tool_resources": {
|
||
"file_search": {
|
||
"vector_store_ids": ["string"]
|
||
}
|
||
}
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"output": [
|
||
{
|
||
"id": "{string}",
|
||
"queries": ["{string}"],
|
||
"status": "{in_progress | searching | incomplete | failed | completed}",
|
||
"type": "file_search_call",
|
||
"results": [
|
||
{
|
||
"attributes": {},
|
||
"file_id": "{string}",
|
||
"filename": "{string}",
|
||
"score": "{float}",
|
||
"text": "{string}"
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Amazon Bedrock Agents</summary>
|
||
Source: <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent-runtime_InvokeAgent.html">https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent-runtime_InvokeAgent.html</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"sessionState": {
|
||
"knowledgeBaseConfigurations": [
|
||
{
|
||
"knowledgeBaseId": "{string}",
|
||
"retrievalConfiguration": {
|
||
"vectorSearchConfiguration": {
|
||
"filter": {},
|
||
"implicitFilterConfiguration": {
|
||
"metadataAttributes": [
|
||
{
|
||
"description": "{string}",
|
||
"key": "{string}",
|
||
"type": "{string}"
|
||
}
|
||
],
|
||
"modelArn": "{string}"
|
||
},
|
||
"numberOfResults": "{number}",
|
||
"overrideSearchType": "{string}",
|
||
"rerankingConfiguration": {
|
||
"bedrockRerankingConfiguration": {
|
||
"metadataConfiguration": {
|
||
"selectionMode": "{string}",
|
||
"selectiveModeConfiguration": {}
|
||
},
|
||
"modelConfiguration": {
|
||
"additionalModelRequestFields": {
|
||
"string" : "{JSON string}"
|
||
},
|
||
"modelArn": "{string}"
|
||
},
|
||
"numberOfRerankedResults": "{number}"
|
||
},
|
||
"type": "{string}"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"trace": {
|
||
"orchestrationTrace": {
|
||
"invocationInput": {
|
||
"invocationType": "KNOWLEDGE_BASE",
|
||
"knowledgeBaseLookupInput": {
|
||
"knowledgeBaseId": "{string}",
|
||
"text": "{string}"
|
||
}
|
||
},
|
||
"observation": {
|
||
"type": "KNOWLEDGE_BASE",
|
||
"knowledgeBaseLookupOutput": {
|
||
"retrievedReferences": [
|
||
{
|
||
"metadata": {},
|
||
"content": {
|
||
"byteContent": "{string}",
|
||
"row": [
|
||
{
|
||
"columnName": "{string}",
|
||
"columnValue": "{string}",
|
||
"type": "{BLOB | BOOLEAN | DOUBLE | NULL | LONG | STRING}"
|
||
}
|
||
],
|
||
"text": "{string}",
|
||
"type": "{TEXT | IMAGE | ROW}"
|
||
}
|
||
}
|
||
],
|
||
"metadata": {
|
||
"clientRequestId": "{string}",
|
||
"endTime": "{timestamp}",
|
||
"operationTotalTimeMs": "{long}",
|
||
"startTime": "{timestamp}",
|
||
"totalTimeMs": "{long}",
|
||
"usage": {
|
||
"inputTokens": "{integer}",
|
||
"outputTokens": "{integer}"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Google</summary>
|
||
Source: <a href="https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/grounding-with-vertex-ai-search">https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/grounding-with-vertex-ai-search</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"contents": [
|
||
{
|
||
"role": "user",
|
||
"parts": [
|
||
{
|
||
"text": "{string}"
|
||
}
|
||
]
|
||
}
|
||
],
|
||
"tools": [
|
||
{
|
||
"retrieval": {
|
||
"vertexAiSearch": {
|
||
"datastore": "{string}"
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"content": {
|
||
"role": "model",
|
||
"parts": [
|
||
{
|
||
"text": "{string}"
|
||
}
|
||
]
|
||
},
|
||
"groundingMetadata": {
|
||
"retrievalQueries": [
|
||
"{string}"
|
||
],
|
||
"groundingChunks": [
|
||
{
|
||
"retrievedContext": {
|
||
"uri": "{string}",
|
||
"title": "{string}"
|
||
}
|
||
}
|
||
],
|
||
"groundingSupport": [
|
||
{
|
||
"segment": {
|
||
"startIndex": "{number}",
|
||
"endIndex": "{number}"
|
||
},
|
||
"segment_text": "{string}",
|
||
"supportChunkIndices": ["{number}"],
|
||
"confidenceScore": ["{number}"]
|
||
}
|
||
]
|
||
}
|
||
}
|
||
```
|
||
</details>
|
||
|
||
#### Commonalities
|
||
|
||
- **Vector Store Integration**: Providers like Azure and OpenAI use `vector_store_ids` or similar constructs to reference vector stores for file search, suggesting a common approach to retrieval-augmented generation.
|
||
- **Search Configuration**: Requests include configurations for search (e.g., `vectorSearchConfiguration`, `ranking_options`), allowing customization of retrieval parameters like result count or ranking.
|
||
- **Result Structure**: Responses contain a list of search results with fields like `file_id`, `score`, and `content` or `text`, enabling consistent processing of retrieved data.
|
||
- **Metadata Inclusion**: Search responses often include metadata (e.g., `score`, `timestamp`, `usage`), which can be abstracted for unified analytics and performance tracking.
|
||
|
||
<hr>
|
||
|
||
#### Web Search
|
||
<details>
|
||
<summary>Azure AI Foundry Agent Service</summary>
|
||
Source: <a href="https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/bing-code-samples?pivots=rest">https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/bing-code-samples?pivots=rest</a>
|
||
|
||
Bing Search Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "bing_grounding",
|
||
"bing_grounding": {
|
||
"search_configurations": [
|
||
{
|
||
"connection_id": "{string}",
|
||
"count": "{number}",
|
||
"market": "{string}",
|
||
"set_lang": "{string}",
|
||
"freshness": "{string}",
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Bing Search Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "function",
|
||
"bing_grounding": {} // From documentation: Reserved for future use
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI ChatCompletion API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat">https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"web_search_options": {},
|
||
"messages": [
|
||
{
|
||
"role": "user",
|
||
"content": "{string}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
[
|
||
{
|
||
"index": 0,
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": "{string}",
|
||
"annotations": [
|
||
{
|
||
"type": "url_citation",
|
||
"url_citation": {
|
||
"end_index": "{number}",
|
||
"start_index": "{number}",
|
||
"title": "{string}",
|
||
"url": "{string}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>OpenAI Responses API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses">https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "web_search_preview"
|
||
}
|
||
],
|
||
"input": "{string}"
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"output": [
|
||
{
|
||
"type": "web_search_call",
|
||
"id": "{string}",
|
||
"status": "{string}"
|
||
},
|
||
{
|
||
"id": "{string}",
|
||
"type": "message",
|
||
"status": "{string}",
|
||
"role": "assistant",
|
||
"content": [
|
||
{
|
||
"type": "output_text",
|
||
"text": "{string}",
|
||
"annotations": [
|
||
{
|
||
"type": "url_citation",
|
||
"start_index": "{number}",
|
||
"end_index": "{string}",
|
||
"url": "{string}",
|
||
"title": "{string}"
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Google</summary>
|
||
Source: <a href="https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/grounding-with-google-search">https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/grounding-with-google-search</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"contents": [
|
||
{
|
||
"role": "user",
|
||
"parts": [
|
||
{
|
||
"text": "{string}"
|
||
}
|
||
]
|
||
}
|
||
],
|
||
"tools": [
|
||
{
|
||
"googleSearch": {}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"content": {
|
||
"role": "model",
|
||
"parts": [
|
||
{
|
||
"text": "{string}"
|
||
}
|
||
]
|
||
},
|
||
"groundingMetadata": {
|
||
"webSearchQueries": [
|
||
"{string}"
|
||
],
|
||
"searchEntryPoint": {
|
||
"renderedContent": "{string}"
|
||
},
|
||
"groundingChunks": [
|
||
{
|
||
"web": {
|
||
"uri": "{string}",
|
||
"title": "{string}",
|
||
"domain": "{string}"
|
||
}
|
||
}
|
||
],
|
||
"groundingSupports": [
|
||
{
|
||
"segment": {
|
||
"startIndex": "{number}",
|
||
"endIndex": "{number}",
|
||
"text": "{string}"
|
||
},
|
||
"groundingChunkIndices": [
|
||
"{number}"
|
||
],
|
||
"confidenceScores": [
|
||
"{number}"
|
||
]
|
||
}
|
||
],
|
||
"retrievalMetadata": {}
|
||
}
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Anthropic</summary>
|
||
Source: <a href="https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/web-search-tool">https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/web-search-tool</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"name": "web_search",
|
||
"type": "web_search_20250305",
|
||
"max_uses": "{number}",
|
||
"allowed_domains": ["{string}"],
|
||
"blocked_domains": ["{string}"],
|
||
"user_location": {
|
||
"type": "approximate",
|
||
"city": "{string}",
|
||
"region": "{string}",
|
||
"country": "{string}",
|
||
"timezone": "{string}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"role": "assistant",
|
||
"content": [
|
||
{
|
||
"type": "server_tool_use",
|
||
"id": "{string}",
|
||
"name": "web_search",
|
||
"input": {
|
||
"query": "{string}"
|
||
}
|
||
},
|
||
{
|
||
"type": "web_search_tool_result",
|
||
"tool_use_id": "{string}",
|
||
"content": [
|
||
{
|
||
"type": "web_search_result",
|
||
"url": "{string}",
|
||
"title": "{string}",
|
||
"encrypted_content": "{string}",
|
||
"page_age": "{string}"
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"text": "{string}",
|
||
"type": "text",
|
||
"citations": [
|
||
{
|
||
"type": "web_search_result_location",
|
||
"url": "{string}",
|
||
"title": "{string}",
|
||
"encrypted_index": "{string}",
|
||
"cited_text": "{string}"
|
||
}
|
||
]
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
#### Commonalities
|
||
|
||
- **Tool-Based Activation**: Providers define web search as a tool (e.g., `web_search`, `bing_grounding`, `googleSearch`), typically within a `tools` array, allowing standardized activation of search capabilities.
|
||
- **Query Input**: Requests support passing a search query (e.g., via `input`, `content`, or `query`), enabling a unified interface for initiating searches.
|
||
- **Result Annotations**: Responses include search results with metadata like `url`, `title`, and sometimes `confidenceScores` or `citations`, which can be abstracted for consistent result presentation.
|
||
- **Grounding Metadata**: Most providers include grounding metadata (e.g., `groundingMetadata`, `annotations`), facilitating traceability and validation of search results.
|
||
|
||
<hr>
|
||
|
||
#### Remote MCP Servers
|
||
<details>
|
||
<summary>OpenAI Responses API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/guides/tools-remote-mcp">https://platform.openai.com/docs/guides/tools-remote-mcp</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "mcp",
|
||
"server_label": "{string}",
|
||
"server_url": "{string}",
|
||
"require_approval": "{string}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"output": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "mcp_list_tools",
|
||
"server_label": "{string}",
|
||
"tools": [
|
||
{
|
||
"name": "{string}",
|
||
"input_schema": "{JSON Schema object}"
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"id": "{string}",
|
||
"type": "mcp_call",
|
||
"approval_request_id": "{string}",
|
||
"arguments": "{JSON string}",
|
||
"error": "{string}",
|
||
"name": "{string}",
|
||
"output": "{string}",
|
||
"server_label": "{string}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Google</summary>
|
||
Source: <a href="https://google.github.io/adk-docs/tools/mcp-tools/#using-mcp-tools-in-your-own-agent-out-of-adk-web">https://google.github.io/adk-docs/tools/mcp-tools/#using-mcp-tools-in-your-own-agent-out-of-adk-web</a>
|
||
|
||
```python
|
||
async def get_agent_async():
|
||
toolset = MCPToolset(
|
||
tool_filter=['read_file', 'list_directory'] # Optional: filter specific tools
|
||
connection_params=SseServerParams(url="http://remote-server:port/path", headers={...})
|
||
)
|
||
|
||
# Use in an agent
|
||
root_agent = LlmAgent(
|
||
model='model', # Adjust model name if needed based on availability
|
||
name='agent_name',
|
||
instruction='agent_instructions',
|
||
tools=[toolset], # Provide the MCP tools to the ADK agent
|
||
)
|
||
return root_agent, toolset
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Anthropic</summary>
|
||
Source: <a href="https://docs.anthropic.com/en/docs/agents-and-tools/mcp-connector">https://docs.anthropic.com/en/docs/agents-and-tools/mcp-connector</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"messages": [
|
||
{
|
||
"role": "user",
|
||
"content": "{string}"
|
||
}
|
||
],
|
||
"mcp_servers": [
|
||
{
|
||
"type": "url",
|
||
"url": "{string}",
|
||
"name": "{string}",
|
||
"tool_configuration": {
|
||
"enabled": true,
|
||
"allowed_tools": ["{string}"]
|
||
},
|
||
"authorization_token": "{string}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Use Response:
|
||
```json
|
||
{
|
||
"type": "mcp_tool_use",
|
||
"id": "{string}",
|
||
"name": "{string}",
|
||
"server_name": "{string}",
|
||
"input": { "param1": "{object}", "param2": "{object}" }
|
||
}
|
||
```
|
||
|
||
Tool Result Response:
|
||
```json
|
||
{
|
||
"type": "mcp_tool_result",
|
||
"tool_use_id": "{string}",
|
||
"is_error": "{boolean}",
|
||
"content": [
|
||
{
|
||
"type": "text",
|
||
"text": "{string}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
#### Commonalities
|
||
|
||
- **Server Configuration**: Providers specify remote servers via URL and metadata (e.g., `server_url`, `url`, `name`), enabling a standardized way to connect to external MCP services.
|
||
- **Tool Integration**: MCP tools are integrated into the `tools` or `mcp_servers` array, allowing agents to interact with remote tools in a consistent manner.
|
||
- **Input/Output Structure**: Requests and responses include structured input (e.g., `input`, `arguments`) and output (e.g., `output`, `content`), supporting abstraction for tool execution workflows.
|
||
- **Authorization Support**: Most providers include mechanisms for authentication (e.g., `authorization_token`, `headers`), which can be abstracted for secure communication with remote servers.
|
||
|
||
<hr>
|
||
|
||
#### Computer Use
|
||
<details>
|
||
<summary>OpenAI Responses API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/guides/tools-computer-use">https://platform.openai.com/docs/guides/tools-computer-use</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "computer_use_preview",
|
||
"display_width": "{number}",
|
||
"display_height": "{number}",
|
||
"environment": "{browser | mac | windows | ubuntu}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"output": [
|
||
{
|
||
"type": "reasoning",
|
||
"id": "{string}",
|
||
"summary": [
|
||
{
|
||
"type": "summary_text",
|
||
"text": "{string}"
|
||
}
|
||
]
|
||
},
|
||
{
|
||
"type": "computer_call",
|
||
"id": "{string}",
|
||
"call_id": "{string}",
|
||
"action": {
|
||
"type": "{click | double_click | drag | keypress | move | screenshot | scroll | type | wait}",
|
||
// Other properties are associated with specific action type.
|
||
},
|
||
"pending_safety_checks": [],
|
||
"status": "{in_progress | completed | incomplete}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Amazon Bedrock Agents</summary>
|
||
Source: <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax">https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax</a><br>
|
||
Source: <a href="https://docs.aws.amazon.com/bedrock/latest/userguide/agent-computer-use-handle-tools.html">https://docs.aws.amazon.com/bedrock/latest/userguide/agent-computer-use-handle-tools.html</a>
|
||
|
||
CreateAgentActionGroup Request:
|
||
```json
|
||
{
|
||
"actionGroupName": "{string}",
|
||
"parentActionGroupSignature": "ANTHROPIC.Computer",
|
||
"actionGroupState": "ENABLED"
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"returnControl": {
|
||
"invocationId": "{string}",
|
||
"invocationInputs": [
|
||
{
|
||
"functionInvocationInput": {
|
||
"actionGroup": "{string}",
|
||
"actionInvocationType": "RESULT",
|
||
"agentId": "{string}",
|
||
"function": "{string}",
|
||
"parameters": [
|
||
{
|
||
"name": "{string}",
|
||
"type": "string",
|
||
"value": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Anthropic</summary>
|
||
Source: <a href="https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/computer-use-tool">https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/computer-use-tool</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "computer_20250124",
|
||
"name": "computer",
|
||
"display_width_px": "{number}",
|
||
"display_height_px": "{number}",
|
||
"display_number": "{number}"
|
||
},
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"role": "assistant",
|
||
"content": [
|
||
{
|
||
"type": "tool_use",
|
||
"id": "{string}",
|
||
"name": "{string}",
|
||
"input": "{object}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
#### Commonalities
|
||
|
||
- **Tool Type Definition**: Providers define a computer use tool (e.g., `computer_use_preview`, `computer_20250124`, `ANTHROPIC.Computer`) within the `tools` array, indicating support for computer interaction capabilities.
|
||
- **Action Specification**: Responses include actions (e.g., `click`, `keypress`, `type`) with associated parameters, enabling standardized interaction with computer environments.
|
||
- **Environment Configuration**: Requests allow specifying the environment (e.g., `browser`, `windows`, `display_width`), which can be abstracted for cross-platform compatibility.
|
||
- **Status Tracking**: Responses include status indicators (e.g., `status`, `pending_safety_checks`), facilitating consistent monitoring of computer use tasks.
|
||
|
||
<hr>
|
||
|
||
#### OpenAPI Spec Tool
|
||
<details>
|
||
<summary>Azure AI Foundry Agent Service</summary>
|
||
Source: <a href="https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/openapi-spec-samples?pivots=rest-api">https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/openapi-spec-samples?pivots=rest-api</a><br>
|
||
Source: <a href="https://learn.microsoft.com/en-us/rest/api/aifoundry/aiagents/run-steps/get-run-step?view=rest-aifoundry-aiagents-v1&tabs=HTTP#runstepopenapitoolcall">https://learn.microsoft.com/en-us/rest/api/aifoundry/aiagents/run-steps/get-run-step?view=rest-aifoundry-aiagents-v1&tabs=HTTP#runstepopenapitoolcall</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "openapi",
|
||
"openapi": {
|
||
"description": "{string}",
|
||
"name": "{string}",
|
||
"auth": {
|
||
"type": "{string}"
|
||
},
|
||
"spec": "{OpenAPI specification object}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"tool_calls": [
|
||
{
|
||
"id": "{string}",
|
||
"type": "openapi",
|
||
"openapi": {} // From documentation: Reserved for future use
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
<details>
|
||
<summary>Amazon Bedrock Agents</summary>
|
||
Source: <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax">https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax</a>
|
||
|
||
CreateAgentActionGroup Request:
|
||
```json
|
||
{
|
||
"apiSchema": {
|
||
"payload": "{JSON or YAML OpenAPI specification string}"
|
||
}
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"invocationInputs": [
|
||
{
|
||
"apiInvocationInput": {
|
||
"actionGroup": "{string}",
|
||
"apiPath": "{string}",
|
||
"httpMethod": "{string}",
|
||
"parameters": [
|
||
{
|
||
"name": "{string}",
|
||
"type": "{string}",
|
||
"value": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
#### Commonalities
|
||
|
||
- **OpenAPI Specification**: Both providers support defining tools using OpenAPI specifications, either as a JSON/YAML payload or a structured `spec` object, enabling standardized API integration.
|
||
- **Tool Type Identification**: The tool is identified as `openapi` or via an `apiSchema`, providing a clear entry point for OpenAPI-based tool usage.
|
||
- **Parameter Handling**: Responses include parameters (e.g., `parameters`, `apiPath`, `httpMethod`) for API invocation, which can be abstracted for unified API call execution.
|
||
|
||
<hr>
|
||
|
||
#### Stateful Functions
|
||
<details>
|
||
<summary>Azure AI Foundry Agent Service</summary>
|
||
Source: <a href="https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/azure-functions-samples?pivots=rest">https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/azure-functions-samples?pivots=rest</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "azure_function",
|
||
"azure_function": {
|
||
"function": {
|
||
"name": "{string}",
|
||
"description": "{string}",
|
||
"parameters": "{JSON Schema object}"
|
||
},
|
||
"input_binding": {
|
||
"type": "storage_queue",
|
||
"storage_queue": {
|
||
"queue_service_endpoint": "{string}",
|
||
"queue_name": "{string}"
|
||
}
|
||
},
|
||
"output_binding": {
|
||
"type": "storage_queue",
|
||
"storage_queue": {
|
||
"queue_service_endpoint": "{string}",
|
||
"queue_name": "{string}"
|
||
}
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response: Not specified in the documentation.
|
||
</details>
|
||
<details>
|
||
<summary>Amazon Bedrock Agents</summary>
|
||
Source: <a href="https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax">https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax</a>
|
||
|
||
CreateAgentActionGroup Request:
|
||
```json
|
||
{
|
||
"apiSchema": {
|
||
"payload": "{JSON or YAML OpenAPI specification string}"
|
||
}
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"invocationInputs": [
|
||
{
|
||
"apiInvocationInput": {
|
||
"actionGroup": "{string}",
|
||
"apiPath": "{string}",
|
||
"httpMethod": "{string}",
|
||
"parameters": [
|
||
{
|
||
"name": "{string}",
|
||
"type": "{string}",
|
||
"value": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
#### Commonalities
|
||
|
||
- **API-Driven Interaction**: Both providers use API-based structures (e.g., `apiSchema`, `azure_function`) to define stateful functions, enabling integration with external services.
|
||
- **Parameter Specification**: Requests include parameter definitions (e.g., `parameters`, `JSON Schema object`), supporting standardized input handling.
|
||
|
||
<hr>
|
||
|
||
#### Text Editor
|
||
<details>
|
||
<summary>Anthropic</summary>
|
||
Source: <a href="https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/text-editor-tool">https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/text-editor-tool</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "text_editor_20250429",
|
||
"name": "str_replace_based_edit_tool"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"role": "assistant",
|
||
"content": [
|
||
{
|
||
"type": "tool_use",
|
||
"id": "{string}",
|
||
"name": "str_replace_based_edit_tool",
|
||
"input": {
|
||
"command": "{string}",
|
||
"path": "{string}"
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
<hr>
|
||
|
||
#### Microsoft Fabric
|
||
<details>
|
||
<summary>Azure AI Foundry Agent Service</summary>
|
||
Source: <a href="https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/fabric?pivots=rest">https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/fabric?pivots=rest</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "fabric_dataagent",
|
||
"fabric_dataagent": {
|
||
"connections": [
|
||
{
|
||
"connection_id": "{string}"
|
||
}
|
||
]
|
||
}
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response: Not specified in the documentation.
|
||
</details>
|
||
|
||
<hr>
|
||
|
||
#### Image Generation
|
||
<details>
|
||
<summary>OpenAI Responses API</summary>
|
||
Source: <a href="https://platform.openai.com/docs/guides/tools-image-generation">https://platform.openai.com/docs/guides/tools-image-generation</a>
|
||
|
||
Message Request:
|
||
```json
|
||
{
|
||
"tools": [
|
||
{
|
||
"type": "image_generation"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
|
||
Tool Call Response:
|
||
```json
|
||
{
|
||
"output": [
|
||
{
|
||
"type": "image_generation_call",
|
||
"id": "{string}",
|
||
"result": "{Base64 string}",
|
||
"status": "{string}"
|
||
}
|
||
]
|
||
}
|
||
```
|
||
</details>
|
||
|
||
<hr>
|
||
|
||
## Decision Outcome
|
||
|
||
TBD.
|