---
# These are optional elements. Feel free to remove any of them.
status: {proposed}
contact: {dmytrostruk}
date: {2025-06-23}
deciders: {stephentoub, markwallace-microsoft, RogerBarreto, westey-m}
consulted: {}
informed: {}
---
# Agent Tools
## Context and Problem Statement
AI agents increasingly rely on diverse tools like function calling, file search, and computer use, but integrating each tool often requires custom, inconsistent implementations. A unified abstraction for tool usage is essential to simplify development, ensure consistency, and enable scalable, reliable agent performance across varied tasks.
## Decision Drivers
- The abstraction must provide a consistent API for all tools to reduce complexity and improve developer experience.
- The design should allow seamless integration of new tools without significant changes to existing implementations.
- Robust mechanisms for managing tool-specific errors and timeouts are required for reliability.
- The abstraction should support a fallback approach to directly use unsupported or custom tools, bypassing standard abstractions when necessary.
## Considered Options
### Option 1: Use ChatOptions.RawRepresentationFactory for Provider-Specific Tools
#### Description
Utilize the existing `ChatOptions.RawRepresentationFactory` to inject provider-specific tools (e.g., for an AI provider like Foundry) without extending the `AITool` abstract class from `Microsoft.Extensions.AI`.
```csharp
ChatOptions options = new()
{
RawRepresentationFactory = _ => new ResponseCreationOptions()
{
Tools = { ... }, // backend-specific tools
},
};
```
#### Pros
- No development work needed; leverages existing `Microsoft.Extensions.AI` functionality.
- Flexible for integrating tools from any AI provider without modifying the `AITool`.
- Minimal codebase changes, reducing the risk of introducing errors.
#### Cons
- Requires a separate mechanism to register tools, complicating the developer experience.
- Developers must know the specific AI provider (via `IChatClient`) to configure tools, reducing abstraction.
- Inconsistent with the `AITool` abstraction, leading to fragmented tool usage patterns.
- Poor tool discoverability, as they are not integrated into the `AITool` ecosystem.
### Option 2: Add Provider-Specific AITool-Derived Types in Provider Packages
#### Description
Create provider-specific tool types that inherit from the `AITool` abstract class within each AI provider’s package (e.g., a Foundry package could include Foundry-specific tools). The provider’s `IChatClient` implementation would natively recognize and process these `AITool`-derived types, eliminating the need for a separate registration mechanism.
#### Pros
- Integrates with the `AITool` abstract class, providing a consistent developer experience within the `Microsoft.Extensions.AI`.
- Eliminates the need for a special registration mechanism like `RawRepresentationFactory`.
- Enhances type safety and discoverability for provider-specific tools.
- Aligns with the standardized interface driver by leveraging `AITool` as the base class.
#### Cons
- Developers must know they are targeting a specific AI provider to select the appropriate `AITool`-derived types.
- Increases maintenance overhead for each provider’s package to support and update these tool types.
- Leads to fragmentation, as each provider requires its own set of `AITool`-derived types.
- Potential for duplication if multiple providers implement similar tools with different `AITool` derivatives.
### Option 3: Create Generic AITool-Derived Abstractions in M.E.AI.Abstractions
#### Description
Develop generic tool abstractions that inherit from the `AITool` abstract class in the `M.E.AI.Abstractions` package (e.g., `HostedCodeInterpreterTool`, `HostedWebSearchTool`). These abstractions map to common tool concepts across multiple AI providers, with provider-specific implementations handled internally.
#### Pros
- Provides a standardized `AITool`-based interface across AI providers, improving consistency and developer experience.
- Reduces the need for provider-specific knowledge by abstracting tool implementations.
- Highly extensible, supporting new `AITool`-derived types for common tool concepts (e.g., server-side MCP tools).
#### Cons
- Complex mapping logic needed to support diverse provider implementations.
- May not cover niche or provider-specific tools, necessitating a fallback mechanism.
### Option 4: Hybrid Approach Combining Options 1, 2, and 3
#### Description
Implement a hybrid strategy where common tools use generic `AITool`-derived abstractions in `M.E.AI.Abstractions` (Option 3), provider-specific tools (e.g., for Foundry) are implemented as `AITool`-derived types in their respective provider packages (Option 2), and rare or unsupported tools fall back to `ChatOptions.RawRepresentationFactory` (Option 1).
#### Pros
- Balances developer experience and flexibility by using the best `AITool`-based approach for each tool type.
- Supports standardized `AITool` interfaces for common tools while allowing provider-specific and breakglass mechanisms.
- Extensible and scalable, accommodating both current and future tool requirements across AI providers.
- Addresses ancillary and intermediate content (e.g., MCP permissions) with generic types.
#### Cons
- Increases complexity by managing multiple `AITool` integration approaches within the same system.
- Requires clear documentation to guide developers on when to use each option.
- Potential for inconsistency if boundaries between approaches are not well-defined.
- Higher maintenance burden to support and test multiple tool integration paths.
## More information
### AI Agent Tool Types Availability
Tool Type | Azure AI Foundry Agent Service | OpenAI Assistant API | OpenAI ChatCompletion API | OpenAI Responses API | Amazon Bedrock Agents | Google | Anthropic | Description
-- | -- | -- | -- | -- | -- | -- | -- | --
Function Calling | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | ✅ | Enables custom, stateless functions to define specific agent behaviors.
Code Interpreter | ✅ | ✅ | ❌ | ✅ | ✅ | ✅ | ✅ | Allows agents to execute code for tasks like data analysis or problem-solving.
Search and Retrieval | ✅ (File Search, Azure AI Search) | ✅ (File Search) | ❌ | ✅ (File Search) | ✅ (Knowledge Bases) | ✅ (Vertex AI Search) | ❌ | Enables agents to search and retrieve information from files, knowledge bases, or enterprise search systems.
Web Search | ✅ (Bing Search) | ❌ | ✅ | ✅ | ❌ | ✅ (Google Search) | ✅ | Provides real-time access to internet-based content using search engines or web APIs for dynamic, up-to-date information.
Remote MCP Servers | ✅ | ❌ | ❌ | ✅ | ❌ | ✅ | ✅ | Gives the model access to new capabilities via Model Context Protocol servers.
Computer Use | ❌ | ❌ | ❌ | ✅ | ✅ (ANTHROPIC.Computer) | ❌ | ✅ | Creates agentic workflows that enable a model to control a computer interface.
OpenAPI Spec Tool | ✅ | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | Integrates existing OpenAPI specifications for service APIs.
Stateful Functions | ✅ (Azure Functions) | ❌ | ❌ | ❌ | ✅ (AWS Lambda) | ❌ | ❌ | Supports custom, stateful functions for complex agent actions.
Text Editor | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | Allows agents to view and modify text files for debugging or editing purposes.
Azure Logic Apps | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | Low-code/no-code solution to add workflows to AI agents.
Microsoft Fabric | ✅ | ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | Enables agents to interact with data in Microsoft Fabric for insights.
Image Generation | ❌ | ❌ | ❌ | ✅ | ❌ | ❌ | ❌ | Generates or edits images using GPT image.
### API Comparison
#### Function Calling
Azure AI Foundry Agent Service
Source: https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/function-calling?pivots=rest
Message Request:
```json
{
"tools": [
{
"type": "function",
"function": {
"description": "{string}",
"name": "{string}",
"parameters": "{JSON Schema object}"
}
}
]
}
```
Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "function",
"function": {
"name": "{string}",
"arguments": "{JSON object}",
}
}
]
}
```
OpenAI Assistant API
Source: https://platform.openai.com/docs/assistants/tools/function-calling
Message Request:
```json
{
"tools": [
{
"type": "function",
"function": {
"description": "{string}",
"name": "{string}",
"parameters": "{JSON Schema object}"
}
}
]
}
```
Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "function",
"function": {
"name": "{string}",
"arguments": "{JSON object}",
}
}
]
}
```
OpenAI ChatCompletion API
Source: https://platform.openai.com/docs/guides/function-calling?api-mode=chat
Message Request:
```json
{
"tools": [
{
"type": "function",
"function": {
"description": "{string}",
"name": "{string}",
"parameters": "{JSON Schema object}"
}
}
]
}
```
Tool Call Response:
```json
[
{
"id": "{string}",
"type": "function",
"function": {
"name": "{string}",
"arguments": "{JSON object}",
}
}
]
```
OpenAI Responses API
Source: https://platform.openai.com/docs/guides/function-calling?api-mode=responses
Message Request:
```json
{
"tools": [
{
"type": "function",
"description": "{string}",
"name": "{string}",
"parameters": "{JSON Schema object}"
}
]
}
```
Tool Call Response:
```json
[
{
"id": "{string}",
"call_id": "{string}",
"type": "function_call",
"name": "{string}",
"arguments": "{JSON object}"
}
]
```
Amazon Bedrock Agents
Source: https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax
CreateAgentActionGroup Request:
```json
{
"functionSchema": {
"name": "{string}",
"description": "{string}",
"parameters": {
"type": "{string | number | integer | boolean | array}",
"description": "{string}",
"required": "{boolean}"
}
}
}
```
Tool Call Response:
```json
{
"invocationInputs": [
{
"functionInvocationInput": {
"actionGroup": "{string}",
"function": "{string}",
"parameters": [
{
"name": "{string}",
"type": "{string | number | integer | boolean | array}",
"value": {}
}
]
}
}
]
}
```
Google
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/function-calling#rest
Message Request:
```json
{
"tools": [
{
"functionDeclarations": [
{
"name": "{string}",
"description": "{string}",
"parameters": "{JSON Schema object}"
}
]
}
]
}
```
Tool Call Response:
```json
{
"content": {
"role": "model",
"parts": [
{
"functionCall": {
"name": "{string}",
"args": {
"{argument_name}": {}
}
}
}
]
}
}
```
Anthropic
Source: https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/overview
Message Request:
```json
{
"tools": [
{
"name": "{string}",
"description": "{string}",
"input_schema": "{JSON Schema object}"
}
]
}
```
Tool Call Response:
```json
{
"id": "{string}",
"model": "{string}",
"stop_reason": "tool_use",
"role": "assistant",
"content": [
{
"type": "text",
"text": "{string}"
},
{
"type": "tool_use",
"id": "{string}",
"name": "{string}",
"input": {
"argument_name": {}
}
}
]
}
```
#### Commonalities
- **Standardized Tool Definition**: All providers use a JSON-based structure for defining tools, including a `type` field (commonly "function") and a `function` object with `name`, `description`, and `parameters` (often following JSON Schema).
- **Tool Call Response Structure**: Responses typically include a list of tool calls with an `id`, `type`, and details about the function called (e.g., `name` and `arguments`), enabling consistent handling of function invocations.
- **JSON Schema for Parameters**: Parameters for functions are defined using JSON Schema objects across most providers, facilitating a unified approach to parameter validation and processing.
- **Extensibility**: The structure allows for additional metadata or fields (e.g., `call_id`, `actionGroup`), suggesting potential for abstraction to support provider-specific extensions while maintaining core compatibility.
#### Code Interpreter
Azure AI Foundry Agent Service
Source: https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/code-interpreter-samples?pivots=rest-api
.NET Support: ✅
Message Request:
```json
{
"tools": [
{
"type": "code_interpreter"
}
],
"tool_resources": {
"code_interpreter": {
"file_ids": ["{string}"],
"data_sources": [
{
"type": {
"id_asset": "{string}",
"uri_asset": "{string}"
},
"uri": "{string}"
}
]
}
}
}
```
Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "code_interpreter",
"code_interpreter": {
"input": "{string}",
"outputs": [
{
"type": "image",
"file_id": "{string}"
},
{
"type": "logs",
"logs": "{string}"
}
]
}
}
]
}
```
OpenAI Assistant API
Source: https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/code-interpreter-samples?pivots=rest-api
.NET Support: ✅
Message Request:
```json
{
"tools": [
{
"type": "code_interpreter"
}
],
"tool_resources": {
"code_interpreter": {
"file_ids": ["{string}"]
}
}
}
```
Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "code",
"code": {
"input": "{string}",
"outputs": [
{
"type": "logs",
"logs": "{string}"
}
]
}
}
]
}
```
OpenAI Responses API
Source: https://platform.openai.com/docs/guides/tools-code-interpreter
.NET Support: ❌ (currently in development: GitHub issue)
Message Request:
```json
{
"tools": [
{
"type": "code_interpreter",
"container": { "type": "auto" }
}
]
}
```
Tool Call Response:
```json
[
{
"id": "{string}",
"code": "{string}",
"type": "code_interpreter_call",
"status": "{string}",
"container_id": "{string}",
"results": [
{
"type": "logs",
"logs": "{string}"
},
{
"type": "files",
"files": [
{
"file_id": "{string}",
"mime_type": "{string}"
}
]
}
]
}
]
```
Amazon Bedrock Agents
Source: https://docs.aws.amazon.com/bedrock/latest/userguide/agents-enable-code-interpretation.html
.NET Support: ❌ (Amazon SDK has IChatClient implementation but lacks ChatOptions.RawRepresentationFactory)
CreateAgentActionGroup Request:
```json
{
"actionGroupName": "{string}",
"parentActionGroupSignature": "AMAZON.CodeInterpreter",
"actionGroupState": "ENABLED"
}
```
Tool Call Response:
```json
{
"trace": {
"orchestrationTrace": {
"invocationInput": {
"invocationType": "ACTION_GROUP_CODE_INTERPRETER",
"codeInterpreterInvocationInput": {
"code": "{string}",
"files": ["{string}"]
}
},
"observation": {
"codeInterpreterInvocationOutput": {
"executionError": "{string}",
"executionOutput": "{string}",
"executionTimeout": "{boolean}",
"files": ["{string}"],
"metadata": {
"clientRequestId": "{string}",
"endTime": "{timestamp}",
"operationTotalTimeMs": "{long}",
"startTime": "{timestamp}",
"totalTimeMs": "{long}",
"usage": {
"inputTokens": "{integer}",
"outputTokens": "{integer}"
}
}
}
}
}
}
}
```
Google
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/code-execution#googlegenaisdk_tools_code_exec_with_txt-drest
.NET Support: ❌ (official SDK lacks IChatClient implementation.)
Message Request:
```json
{
"contents": {
"role": "{string}",
"parts": {
"text": "{string}"
}
},
"tools": [
{
"codeExecution": {}
}
]
}
```
Tool Call Response:
```json
{
"content": {
"role": "model",
"parts": [
{
"executableCode": {
"language": "{string}",
"code": "{string}"
}
},
{
"codeExecutionResult": {
"outcome": "{string}",
"output": "{string}"
}
}
]
}
}
```
Anthropic
Source: https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/code-execution-tool
.NET Support: ❌
- Anthropic.SDK - uses `code_interpreter` instead of `code_execution` and lacks a possibility to specify file id.
- Anthropic by tryAGI - has `code_execution` implementation, but it's in beta and can't be used as a tool.
Message Request:
```json
{
"tools": [
{
"name": "code_execution",
"type": "code_execution_20250522"
}
]
}
```
Tool Call Response:
```json
{
"role": "assistant",
"container": {
"id": "{string}",
"expires_at": "{timestamp}"
},
"content": [
{
"type": "server_tool_use",
"id": "{string}",
"name": "code_execution",
"input": {
"code": "{string}"
}
},
{
"type": "code_execution_tool_result",
"tool_use_id": "{string}",
"content": {
"type": "code_execution_result",
"stdout": "{string}",
"stderr": "{string}",
"return_code": "{integer}"
}
}
]
}
```
#### Commonalities
- **Tool Type Specification**: Providers consistently define a `code_interpreter` tool type within the `tools` array, indicating support for code execution capabilities.
- **Input and Output Handling**: Requests include mechanisms to specify code input (e.g., `input` or `code` fields), and responses return execution outputs, such as logs or files, in a structured format.
- **File Resource Support**: Most providers allow associating files with the code interpreter (e.g., via `file_ids` or `files`), enabling data input/output for code execution.
- **Execution Metadata**: Responses often include metadata about the execution process (e.g., `status`, `logs`, or `executionError`), which can be abstracted for standardized error handling and result processing.
#### Search and Retrieval
Azure AI Foundry Agent Service
Source: https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/file-search-upload-files?pivots=rest
File Search Request:
```json
{
"tools": [
{
"type": "file_search"
}
],
"tool_resources": {
"file_search": {
"vector_store_ids": ["{string}"],
"vector_stores": [
{
"name": "{string}",
"configuration": {
"data_sources": [
{
"type": {
"id_asset": "{string}",
"uri_asset": "{string}"
},
"uri": "{string}"
}
]
}
}
]
}
}
}
```
File Search Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "file_search",
"file_search": {
"ranking_options": {
"ranker": "{string}",
"score_threshold": "{float}"
},
"results": [
{
"file_id": "{string}",
"file_name": "{string}",
"score": "{float}",
"content": [
{
"text": "{string}",
"type": "{string}"
}
]
}
]
}
}
]
}
```
Azure AI Search Request:
```json
{
"tools": [
{
"type": "azure_ai_search"
}
],
"tool_resources": {
"azure_ai_search": {
"indexes": [
{
"index_connection_id": "{string}",
"index_name": "{string}",
"query_type": "{string}"
}
]
}
}
}
```
Azure AI Search Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "azure_ai_search",
"azure_ai_search": {} // From documentation: Reserved for future use
}
]
}
```
OpenAI Assistant API
Source: https://platform.openai.com/docs/assistants/tools/file-search
Message Request:
```json
{
"tools": [
{
"type": "file_search"
}
],
"tool_resources": {
"file_search": {
"vector_store_ids": ["string"]
}
}
}
```
Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "file_search",
"file_search": {
"ranking_options": {
"ranker": "{string}",
"score_threshold": "{float}"
},
"results": [
{
"file_id": "{string}",
"file_name": "{string}",
"score": "{float}",
"content": [
{
"text": "{string}",
"type": "{string}"
}
]
}
]
}
}
]
}
```
OpenAI Responses API
Source: https://platform.openai.com/docs/api-reference/responses/create
Message Request:
```json
{
"tools": [
{
"type": "file_search"
}
],
"tool_resources": {
"file_search": {
"vector_store_ids": ["string"]
}
}
}
```
Tool Call Response:
```json
{
"output": [
{
"id": "{string}",
"queries": ["{string}"],
"status": "{in_progress | searching | incomplete | failed | completed}",
"type": "file_search_call",
"results": [
{
"attributes": {},
"file_id": "{string}",
"filename": "{string}",
"score": "{float}",
"text": "{string}"
}
]
}
]
}
```
Amazon Bedrock Agents
Source: https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent-runtime_InvokeAgent.html
Message Request:
```json
{
"sessionState": {
"knowledgeBaseConfigurations": [
{
"knowledgeBaseId": "{string}",
"retrievalConfiguration": {
"vectorSearchConfiguration": {
"filter": {},
"implicitFilterConfiguration": {
"metadataAttributes": [
{
"description": "{string}",
"key": "{string}",
"type": "{string}"
}
],
"modelArn": "{string}"
},
"numberOfResults": "{number}",
"overrideSearchType": "{string}",
"rerankingConfiguration": {
"bedrockRerankingConfiguration": {
"metadataConfiguration": {
"selectionMode": "{string}",
"selectiveModeConfiguration": {}
},
"modelConfiguration": {
"additionalModelRequestFields": {
"string" : "{JSON string}"
},
"modelArn": "{string}"
},
"numberOfRerankedResults": "{number}"
},
"type": "{string}"
}
}
}
}
]
}
}
```
Tool Call Response:
```json
{
"trace": {
"orchestrationTrace": {
"invocationInput": {
"invocationType": "KNOWLEDGE_BASE",
"knowledgeBaseLookupInput": {
"knowledgeBaseId": "{string}",
"text": "{string}"
}
},
"observation": {
"type": "KNOWLEDGE_BASE",
"knowledgeBaseLookupOutput": {
"retrievedReferences": [
{
"metadata": {},
"content": {
"byteContent": "{string}",
"row": [
{
"columnName": "{string}",
"columnValue": "{string}",
"type": "{BLOB | BOOLEAN | DOUBLE | NULL | LONG | STRING}"
}
],
"text": "{string}",
"type": "{TEXT | IMAGE | ROW}"
}
}
],
"metadata": {
"clientRequestId": "{string}",
"endTime": "{timestamp}",
"operationTotalTimeMs": "{long}",
"startTime": "{timestamp}",
"totalTimeMs": "{long}",
"usage": {
"inputTokens": "{integer}",
"outputTokens": "{integer}"
}
}
}
}
}
}
}
```
Google
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/grounding-with-vertex-ai-search
Message Request:
```json
{
"contents": [
{
"role": "user",
"parts": [
{
"text": "{string}"
}
]
}
],
"tools": [
{
"retrieval": {
"vertexAiSearch": {
"datastore": "{string}"
}
}
}
]
}
```
Tool Call Response:
```json
{
"content": {
"role": "model",
"parts": [
{
"text": "{string}"
}
]
},
"groundingMetadata": {
"retrievalQueries": [
"{string}"
],
"groundingChunks": [
{
"retrievedContext": {
"uri": "{string}",
"title": "{string}"
}
}
],
"groundingSupport": [
{
"segment": {
"startIndex": "{number}",
"endIndex": "{number}"
},
"segment_text": "{string}",
"supportChunkIndices": ["{number}"],
"confidenceScore": ["{number}"]
}
]
}
}
```
#### Commonalities
- **Vector Store Integration**: Providers like Azure and OpenAI use `vector_store_ids` or similar constructs to reference vector stores for file search, suggesting a common approach to retrieval-augmented generation.
- **Search Configuration**: Requests include configurations for search (e.g., `vectorSearchConfiguration`, `ranking_options`), allowing customization of retrieval parameters like result count or ranking.
- **Result Structure**: Responses contain a list of search results with fields like `file_id`, `score`, and `content` or `text`, enabling consistent processing of retrieved data.
- **Metadata Inclusion**: Search responses often include metadata (e.g., `score`, `timestamp`, `usage`), which can be abstracted for unified analytics and performance tracking.
#### Web Search
Azure AI Foundry Agent Service
Source: https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/bing-code-samples?pivots=rest
Bing Search Message Request:
```json
{
"tools": [
{
"type": "bing_grounding",
"bing_grounding": {
"search_configurations": [
{
"connection_id": "{string}",
"count": "{number}",
"market": "{string}",
"set_lang": "{string}",
"freshness": "{string}",
}
]
}
}
]
}
```
Bing Search Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "function",
"bing_grounding": {} // From documentation: Reserved for future use
}
]
}
```
OpenAI ChatCompletion API
Source: https://platform.openai.com/docs/guides/tools-web-search?api-mode=chat
Message Request:
```json
{
"web_search_options": {},
"messages": [
{
"role": "user",
"content": "{string}"
}
]
}
```
Tool Call Response:
```json
[
{
"index": 0,
"message": {
"role": "assistant",
"content": "{string}",
"annotations": [
{
"type": "url_citation",
"url_citation": {
"end_index": "{number}",
"start_index": "{number}",
"title": "{string}",
"url": "{string}"
}
}
]
}
}
]
```
OpenAI Responses API
Source: https://platform.openai.com/docs/guides/tools-web-search?api-mode=responses
Message Request:
```json
{
"tools": [
{
"type": "web_search_preview"
}
],
"input": "{string}"
}
```
Tool Call Response:
```json
{
"output": [
{
"type": "web_search_call",
"id": "{string}",
"status": "{string}"
},
{
"id": "{string}",
"type": "message",
"status": "{string}",
"role": "assistant",
"content": [
{
"type": "output_text",
"text": "{string}",
"annotations": [
{
"type": "url_citation",
"start_index": "{number}",
"end_index": "{string}",
"url": "{string}",
"title": "{string}"
}
]
}
]
}
]
}
```
Google
Source: https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/grounding-with-google-search
Message Request:
```json
{
"contents": [
{
"role": "user",
"parts": [
{
"text": "{string}"
}
]
}
],
"tools": [
{
"googleSearch": {}
}
]
}
```
Tool Call Response:
```json
{
"content": {
"role": "model",
"parts": [
{
"text": "{string}"
}
]
},
"groundingMetadata": {
"webSearchQueries": [
"{string}"
],
"searchEntryPoint": {
"renderedContent": "{string}"
},
"groundingChunks": [
{
"web": {
"uri": "{string}",
"title": "{string}",
"domain": "{string}"
}
}
],
"groundingSupports": [
{
"segment": {
"startIndex": "{number}",
"endIndex": "{number}",
"text": "{string}"
},
"groundingChunkIndices": [
"{number}"
],
"confidenceScores": [
"{number}"
]
}
],
"retrievalMetadata": {}
}
}
```
Anthropic
Source: https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/web-search-tool
Message Request:
```json
{
"tools": [
{
"name": "web_search",
"type": "web_search_20250305",
"max_uses": "{number}",
"allowed_domains": ["{string}"],
"blocked_domains": ["{string}"],
"user_location": {
"type": "approximate",
"city": "{string}",
"region": "{string}",
"country": "{string}",
"timezone": "{string}"
}
}
]
}
```
Tool Call Response:
```json
{
"role": "assistant",
"content": [
{
"type": "server_tool_use",
"id": "{string}",
"name": "web_search",
"input": {
"query": "{string}"
}
},
{
"type": "web_search_tool_result",
"tool_use_id": "{string}",
"content": [
{
"type": "web_search_result",
"url": "{string}",
"title": "{string}",
"encrypted_content": "{string}",
"page_age": "{string}"
}
]
},
{
"text": "{string}",
"type": "text",
"citations": [
{
"type": "web_search_result_location",
"url": "{string}",
"title": "{string}",
"encrypted_index": "{string}",
"cited_text": "{string}"
}
]
}
]
}
```
#### Commonalities
- **Tool-Based Activation**: Providers define web search as a tool (e.g., `web_search`, `bing_grounding`, `googleSearch`), typically within a `tools` array, allowing standardized activation of search capabilities.
- **Query Input**: Requests support passing a search query (e.g., via `input`, `content`, or `query`), enabling a unified interface for initiating searches.
- **Result Annotations**: Responses include search results with metadata like `url`, `title`, and sometimes `confidenceScores` or `citations`, which can be abstracted for consistent result presentation.
- **Grounding Metadata**: Most providers include grounding metadata (e.g., `groundingMetadata`, `annotations`), facilitating traceability and validation of search results.
#### Remote MCP Servers
OpenAI Responses API
Source: https://platform.openai.com/docs/guides/tools-remote-mcp
Message Request:
```json
{
"tools": [
{
"type": "mcp",
"server_label": "{string}",
"server_url": "{string}",
"require_approval": "{string}"
}
]
}
```
Tool Call Response:
```json
{
"output": [
{
"id": "{string}",
"type": "mcp_list_tools",
"server_label": "{string}",
"tools": [
{
"name": "{string}",
"input_schema": "{JSON Schema object}"
}
]
},
{
"id": "{string}",
"type": "mcp_call",
"approval_request_id": "{string}",
"arguments": "{JSON string}",
"error": "{string}",
"name": "{string}",
"output": "{string}",
"server_label": "{string}"
}
]
}
```
Google
Source: https://google.github.io/adk-docs/tools/mcp-tools/#using-mcp-tools-in-your-own-agent-out-of-adk-web
```python
async def get_agent_async():
toolset = MCPToolset(
tool_filter=['read_file', 'list_directory'] # Optional: filter specific tools
connection_params=SseServerParams(url="http://remote-server:port/path", headers={...})
)
# Use in an agent
root_agent = LlmAgent(
model='model', # Adjust model name if needed based on availability
name='agent_name',
instruction='agent_instructions',
tools=[toolset], # Provide the MCP tools to the ADK agent
)
return root_agent, toolset
```
Anthropic
Source: https://docs.anthropic.com/en/docs/agents-and-tools/mcp-connector
Message Request:
```json
{
"messages": [
{
"role": "user",
"content": "{string}"
}
],
"mcp_servers": [
{
"type": "url",
"url": "{string}",
"name": "{string}",
"tool_configuration": {
"enabled": true,
"allowed_tools": ["{string}"]
},
"authorization_token": "{string}"
}
]
}
```
Tool Use Response:
```json
{
"type": "mcp_tool_use",
"id": "{string}",
"name": "{string}",
"server_name": "{string}",
"input": { "param1": "{object}", "param2": "{object}" }
}
```
Tool Result Response:
```json
{
"type": "mcp_tool_result",
"tool_use_id": "{string}",
"is_error": "{boolean}",
"content": [
{
"type": "text",
"text": "{string}"
}
]
}
```
#### Commonalities
- **Server Configuration**: Providers specify remote servers via URL and metadata (e.g., `server_url`, `url`, `name`), enabling a standardized way to connect to external MCP services.
- **Tool Integration**: MCP tools are integrated into the `tools` or `mcp_servers` array, allowing agents to interact with remote tools in a consistent manner.
- **Input/Output Structure**: Requests and responses include structured input (e.g., `input`, `arguments`) and output (e.g., `output`, `content`), supporting abstraction for tool execution workflows.
- **Authorization Support**: Most providers include mechanisms for authentication (e.g., `authorization_token`, `headers`), which can be abstracted for secure communication with remote servers.
#### Computer Use
OpenAI Responses API
Source: https://platform.openai.com/docs/guides/tools-computer-use
Message Request:
```json
{
"tools": [
{
"type": "computer_use_preview",
"display_width": "{number}",
"display_height": "{number}",
"environment": "{browser | mac | windows | ubuntu}"
}
]
}
```
Tool Call Response:
```json
{
"output": [
{
"type": "reasoning",
"id": "{string}",
"summary": [
{
"type": "summary_text",
"text": "{string}"
}
]
},
{
"type": "computer_call",
"id": "{string}",
"call_id": "{string}",
"action": {
"type": "{click | double_click | drag | keypress | move | screenshot | scroll | type | wait}",
// Other properties are associated with specific action type.
},
"pending_safety_checks": [],
"status": "{in_progress | completed | incomplete}"
}
]
}
```
Amazon Bedrock Agents
Source: https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax
Source: https://docs.aws.amazon.com/bedrock/latest/userguide/agent-computer-use-handle-tools.html
CreateAgentActionGroup Request:
```json
{
"actionGroupName": "{string}",
"parentActionGroupSignature": "ANTHROPIC.Computer",
"actionGroupState": "ENABLED"
}
```
Tool Call Response:
```json
{
"returnControl": {
"invocationId": "{string}",
"invocationInputs": [
{
"functionInvocationInput": {
"actionGroup": "{string}",
"actionInvocationType": "RESULT",
"agentId": "{string}",
"function": "{string}",
"parameters": [
{
"name": "{string}",
"type": "string",
"value": "{string}"
}
]
}
}
]
}
}
```
Anthropic
Source: https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/computer-use-tool
Message Request:
```json
{
"tools": [
{
"type": "computer_20250124",
"name": "computer",
"display_width_px": "{number}",
"display_height_px": "{number}",
"display_number": "{number}"
},
]
}
```
Tool Call Response:
```json
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "{string}",
"name": "{string}",
"input": "{object}"
}
]
}
```
#### Commonalities
- **Tool Type Definition**: Providers define a computer use tool (e.g., `computer_use_preview`, `computer_20250124`, `ANTHROPIC.Computer`) within the `tools` array, indicating support for computer interaction capabilities.
- **Action Specification**: Responses include actions (e.g., `click`, `keypress`, `type`) with associated parameters, enabling standardized interaction with computer environments.
- **Environment Configuration**: Requests allow specifying the environment (e.g., `browser`, `windows`, `display_width`), which can be abstracted for cross-platform compatibility.
- **Status Tracking**: Responses include status indicators (e.g., `status`, `pending_safety_checks`), facilitating consistent monitoring of computer use tasks.
#### OpenAPI Spec Tool
Azure AI Foundry Agent Service
Source: https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/openapi-spec-samples?pivots=rest-api
Source: https://learn.microsoft.com/en-us/rest/api/aifoundry/aiagents/run-steps/get-run-step?view=rest-aifoundry-aiagents-v1&tabs=HTTP#runstepopenapitoolcall
Message Request:
```json
{
"tools": [
{
"type": "openapi",
"openapi": {
"description": "{string}",
"name": "{string}",
"auth": {
"type": "{string}"
},
"spec": "{OpenAPI specification object}"
}
}
]
}
```
Tool Call Response:
```json
{
"tool_calls": [
{
"id": "{string}",
"type": "openapi",
"openapi": {} // From documentation: Reserved for future use
}
]
}
```
Amazon Bedrock Agents
Source: https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax
CreateAgentActionGroup Request:
```json
{
"apiSchema": {
"payload": "{JSON or YAML OpenAPI specification string}"
}
}
```
Tool Call Response:
```json
{
"invocationInputs": [
{
"apiInvocationInput": {
"actionGroup": "{string}",
"apiPath": "{string}",
"httpMethod": "{string}",
"parameters": [
{
"name": "{string}",
"type": "{string}",
"value": "{string}"
}
]
}
}
]
}
```
#### Commonalities
- **OpenAPI Specification**: Both providers support defining tools using OpenAPI specifications, either as a JSON/YAML payload or a structured `spec` object, enabling standardized API integration.
- **Tool Type Identification**: The tool is identified as `openapi` or via an `apiSchema`, providing a clear entry point for OpenAPI-based tool usage.
- **Parameter Handling**: Responses include parameters (e.g., `parameters`, `apiPath`, `httpMethod`) for API invocation, which can be abstracted for unified API call execution.
#### Stateful Functions
Azure AI Foundry Agent Service
Source: https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/azure-functions-samples?pivots=rest
Message Request:
```json
{
"tools": [
{
"type": "azure_function",
"azure_function": {
"function": {
"name": "{string}",
"description": "{string}",
"parameters": "{JSON Schema object}"
},
"input_binding": {
"type": "storage_queue",
"storage_queue": {
"queue_service_endpoint": "{string}",
"queue_name": "{string}"
}
},
"output_binding": {
"type": "storage_queue",
"storage_queue": {
"queue_service_endpoint": "{string}",
"queue_name": "{string}"
}
}
}
}
]
}
```
Tool Call Response: Not specified in the documentation.
Amazon Bedrock Agents
Source: https://docs.aws.amazon.com/bedrock/latest/APIReference/API_agent_CreateAgentActionGroup.html#API_agent_CreateAgentActionGroup_RequestSyntax
CreateAgentActionGroup Request:
```json
{
"apiSchema": {
"payload": "{JSON or YAML OpenAPI specification string}"
}
}
```
Tool Call Response:
```json
{
"invocationInputs": [
{
"apiInvocationInput": {
"actionGroup": "{string}",
"apiPath": "{string}",
"httpMethod": "{string}",
"parameters": [
{
"name": "{string}",
"type": "{string}",
"value": "{string}"
}
]
}
}
]
}
```
#### Commonalities
- **API-Driven Interaction**: Both providers use API-based structures (e.g., `apiSchema`, `azure_function`) to define stateful functions, enabling integration with external services.
- **Parameter Specification**: Requests include parameter definitions (e.g., `parameters`, `JSON Schema object`), supporting standardized input handling.
#### Text Editor
Anthropic
Source: https://docs.anthropic.com/en/docs/agents-and-tools/tool-use/text-editor-tool
Message Request:
```json
{
"tools": [
{
"type": "text_editor_20250429",
"name": "str_replace_based_edit_tool"
}
]
}
```
Tool Call Response:
```json
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "{string}",
"name": "str_replace_based_edit_tool",
"input": {
"command": "{string}",
"path": "{string}"
}
}
]
}
```
#### Microsoft Fabric
Azure AI Foundry Agent Service
Source: https://learn.microsoft.com/en-us/azure/ai-foundry/agents/how-to/tools/fabric?pivots=rest
Message Request:
```json
{
"tools": [
{
"type": "fabric_dataagent",
"fabric_dataagent": {
"connections": [
{
"connection_id": "{string}"
}
]
}
}
]
}
```
Tool Call Response: Not specified in the documentation.
#### Image Generation
OpenAI Responses API
Source: https://platform.openai.com/docs/guides/tools-image-generation
Message Request:
```json
{
"tools": [
{
"type": "image_generation"
}
]
}
```
Tool Call Response:
```json
{
"output": [
{
"type": "image_generation_call",
"id": "{string}",
"result": "{Base64 string}",
"status": "{string}"
}
]
}
```
## Decision Outcome
TBD.