Files
agent-framework/python/samples/getting_started/middleware/runtime_context_delegation.py
Ren Finlayson 539852f81c
Some checks are pending
CodeQL / Analyze (csharp) (push) Waiting to run
CodeQL / Analyze (python) (push) Waiting to run
dotnet-build-and-test / paths-filter (push) Waiting to run
dotnet-build-and-test / dotnet-build-and-test (Debug, windows-latest, net9.0) (push) Blocked by required conditions
dotnet-build-and-test / dotnet-build-and-test (Release, integration, true, ubuntu-latest, net10.0) (push) Blocked by required conditions
dotnet-build-and-test / dotnet-build-and-test (Release, integration, true, windows-latest, net472) (push) Blocked by required conditions
dotnet-build-and-test / dotnet-build-and-test (Release, ubuntu-latest, net8.0) (push) Blocked by required conditions
dotnet-build-and-test / dotnet-build-and-test-check (push) Blocked by required conditions
test
2026-01-24 03:05:12 +11:00

457 lines
16 KiB
Python

# Copyright (c) Microsoft. All rights reserved.
import asyncio
from collections.abc import Awaitable, Callable
from typing import Annotated
from agent_framework import FunctionInvocationContext, ai_function, function_middleware
from agent_framework.openai import OpenAIChatClient
from pydantic import Field
"""
Runtime Context Delegation Patterns
This sample demonstrates different patterns for passing runtime context (API tokens,
session data, etc.) to tools and sub-agents.
Patterns Demonstrated:
1. **Pattern 1: Single Agent with Middleware & Closure** (Lines 130-180)
- Best for: Single agent with multiple tools
- How: Middleware stores kwargs in container, tools access via closure
- Pros: Simple, explicit state management
- Cons: Requires container instance per agent
2. **Pattern 2: Hierarchical Agents with kwargs Propagation** (Lines 190-240)
- Best for: Parent-child agent delegation with as_tool()
- How: kwargs automatically propagate through as_tool() wrapper
- Pros: Automatic, works with nested delegation, clean separation
- Cons: None - this is the recommended pattern for hierarchical agents
3. **Pattern 3: Mixed - Hierarchical with Middleware** (Lines 250-300)
- Best for: Complex scenarios needing both delegation and state management
- How: Combines automatic kwargs propagation with middleware processing
- Pros: Maximum flexibility, can transform/validate context at each level
- Cons: More complex setup
Key Concepts:
- Runtime Context: Session-specific data like API tokens, user IDs, tenant info
- Middleware: Intercepts function calls to access/modify kwargs
- Closure: Functions capturing variables from outer scope
- kwargs Propagation: Automatic forwarding of runtime context through delegation chains
"""
class SessionContextContainer:
"""Container for runtime session context accessible via closure."""
def __init__(self) -> None:
"""Initialize with None values for runtime context."""
self.api_token: str | None = None
self.user_id: str | None = None
self.session_metadata: dict[str, str] = {}
async def inject_context_middleware(
self,
context: FunctionInvocationContext,
next: Callable[[FunctionInvocationContext], Awaitable[None]],
) -> None:
"""Middleware that extracts runtime context from kwargs and stores in container.
This middleware runs before tool execution and makes runtime context
available to tools via the container instance.
"""
# Extract runtime context from kwargs
self.api_token = context.kwargs.get("api_token")
self.user_id = context.kwargs.get("user_id")
self.session_metadata = context.kwargs.get("session_metadata", {})
# Log what we captured (for demonstration)
if self.api_token or self.user_id:
print("[Middleware] Captured runtime context:")
print(f" - API Token: {'[PRESENT]' if self.api_token else '[NOT PROVIDED]'}")
print(f" - User ID: {'[PRESENT]' if self.user_id else '[NOT PROVIDED]'}")
print(f" - Session Metadata Keys: {list(self.session_metadata.keys())}")
# Continue to tool execution
await next(context)
# Create a container instance that will be shared via closure
runtime_context = SessionContextContainer()
@ai_function
async def send_email(
to: Annotated[str, Field(description="Recipient email address")],
subject: Annotated[str, Field(description="Email subject line")],
body: Annotated[str, Field(description="Email body content")],
) -> str:
"""Send an email using authenticated API (simulated).
This function accesses runtime context (API token, user ID) via closure
from the runtime_context container.
"""
# Access runtime context via closure
token = runtime_context.api_token
user_id = runtime_context.user_id
tenant = runtime_context.session_metadata.get("tenant", "unknown")
print("\n[send_email] Executing with runtime context:")
print(f" - Token: {'[PRESENT]' if token else '[NOT PROVIDED]'}")
print(f" - User ID: {'[PRESENT]' if user_id else '[NOT PROVIDED]'}")
print(f" - Tenant: {'[PRESENT]' if tenant and tenant != 'unknown' else '[NOT PROVIDED]'}")
print(" - Recipient count: 1")
print(f" - Subject length: {len(subject)} chars")
# Simulate API call with authentication
if not token:
return "ERROR: No API token provided - cannot send email"
# Simulate sending email
return f"Email sent to {to} from user {user_id} (tenant: {tenant}). Subject: '{subject}'"
@ai_function
async def send_notification(
message: Annotated[str, Field(description="Notification message to send")],
priority: Annotated[str, Field(description="Priority level: low, medium, high")] = "medium",
) -> str:
"""Send a push notification using authenticated API (simulated).
This function accesses runtime context via closure from runtime_context.
"""
token = runtime_context.api_token
user_id = runtime_context.user_id
print("\n[send_notification] Executing with runtime context:")
print(f" - Token: {'[PRESENT]' if token else '[NOT PROVIDED]'}")
print(f" - User ID: {'[PRESENT]' if user_id else '[NOT PROVIDED]'}")
print(f" - Message length: {len(message)} chars")
print(f" - Priority: {priority}")
if not token:
return "ERROR: No API token provided - cannot send notification"
return f"Notification sent to user {user_id} with priority {priority}: {message}"
async def pattern_1_single_agent_with_closure() -> None:
"""Pattern 1: Single agent with middleware and closure for runtime context."""
print("\n" + "=" * 70)
print("PATTERN 1: Single Agent with Middleware & Closure")
print("=" * 70)
print("Use case: Single agent with multiple tools sharing runtime context")
print()
client = OpenAIChatClient(model_id="gpt-4o-mini")
# Create agent with both tools and shared context via middleware
communication_agent = client.as_agent(
name="communication_agent",
instructions=(
"You are a communication assistant that can send emails and notifications. "
"Use send_email for email tasks and send_notification for notification tasks."
),
tools=[send_email, send_notification],
# Both tools share the same context container via middleware
middleware=[runtime_context.inject_context_middleware],
)
# Test 1: Send email with runtime context
print("\n" + "=" * 70)
print("TEST 1: Email with Runtime Context")
print("=" * 70)
user_query = (
"Send an email to john@example.com with subject 'Meeting Tomorrow' and body 'Don't forget our 2pm meeting.'"
)
print(f"\nUser: {user_query}")
result1 = await communication_agent.run(
user_query,
# Runtime context passed as kwargs
api_token="sk-test-token-xyz-789",
user_id="user-12345",
session_metadata={"tenant": "acme-corp", "region": "us-west"},
)
print(f"\nAgent: {result1.text}")
# Test 2: Send notification with different runtime context
print("\n" + "=" * 70)
print("TEST 2: Notification with Different Runtime Context")
print("=" * 70)
user_query2 = "Send a high priority notification saying 'Your order has shipped!'"
print(f"\nUser: {user_query2}")
result2 = await communication_agent.run(
user_query2,
# Different runtime context for this request
api_token="sk-prod-token-abc-456",
user_id="user-67890",
session_metadata={"tenant": "store-inc", "region": "eu-central"},
)
print(f"\nAgent: {result2.text}")
# Test 3: Both email and notification in one request
print("\n" + "=" * 70)
print("TEST 3: Multiple Tools in One Request")
print("=" * 70)
user_query3 = (
"Send an email to alice@example.com about the new feature launch "
"and also send a notification to remind about the team meeting."
)
print(f"\nUser: {user_query3}")
result3 = await communication_agent.run(
user_query3,
api_token="sk-dev-token-def-123",
user_id="user-11111",
session_metadata={"tenant": "dev-team", "region": "us-east"},
)
print(f"\nAgent: {result3.text}")
# Test 4: Missing context - show error handling
print("\n" + "=" * 70)
print("TEST 4: Missing Runtime Context (Error Case)")
print("=" * 70)
user_query4 = "Send an email to test@example.com with subject 'Test'"
print(f"\nUser: {user_query4}")
print("Note: Running WITHOUT api_token to demonstrate error handling")
result4 = await communication_agent.run(
user_query4,
# Missing api_token - tools should handle gracefully
user_id="user-22222",
)
print(f"\nAgent: {result4.text}")
print("\n✓ Pattern 1 complete - Middleware & closure pattern works for single agents")
# Pattern 2: Hierarchical agents with automatic kwargs propagation
# ================================================================
# Create tools for sub-agents (these will use kwargs propagation)
@ai_function
async def send_email_v2(
to: Annotated[str, Field(description="Recipient email")],
subject: Annotated[str, Field(description="Subject")],
body: Annotated[str, Field(description="Body")],
) -> str:
"""Send email - demonstrates kwargs propagation pattern."""
# In this pattern, we can create a middleware to access kwargs
# But for simplicity, we'll just simulate the operation
return f"Email sent to {to} with subject '{subject}'"
@ai_function
async def send_sms(
phone: Annotated[str, Field(description="Phone number")],
message: Annotated[str, Field(description="SMS message")],
) -> str:
"""Send SMS message."""
return f"SMS sent to {phone}: {message}"
async def pattern_2_hierarchical_with_kwargs_propagation() -> None:
"""Pattern 2: Hierarchical agents with automatic kwargs propagation through as_tool()."""
print("\n" + "=" * 70)
print("PATTERN 2: Hierarchical Agents with kwargs Propagation")
print("=" * 70)
print("Use case: Parent agent delegates to specialized sub-agents")
print("Feature: Runtime kwargs automatically propagate through as_tool()")
print()
# Track kwargs at each level
email_agent_kwargs: dict[str, object] = {}
sms_agent_kwargs: dict[str, object] = {}
@function_middleware
async def email_kwargs_tracker(
context: FunctionInvocationContext, next: Callable[[FunctionInvocationContext], Awaitable[None]]
) -> None:
email_agent_kwargs.update(context.kwargs)
print(f"[EmailAgent] Received runtime context: {list(context.kwargs.keys())}")
await next(context)
@function_middleware
async def sms_kwargs_tracker(
context: FunctionInvocationContext, next: Callable[[FunctionInvocationContext], Awaitable[None]]
) -> None:
sms_agent_kwargs.update(context.kwargs)
print(f"[SMSAgent] Received runtime context: {list(context.kwargs.keys())}")
await next(context)
client = OpenAIChatClient(model_id="gpt-4o-mini")
# Create specialized sub-agents
email_agent = client.as_agent(
name="email_agent",
instructions="You send emails using the send_email_v2 tool.",
tools=[send_email_v2],
middleware=[email_kwargs_tracker],
)
sms_agent = client.as_agent(
name="sms_agent",
instructions="You send SMS messages using the send_sms tool.",
tools=[send_sms],
middleware=[sms_kwargs_tracker],
)
# Create coordinator that delegates to sub-agents
coordinator = client.as_agent(
name="coordinator",
instructions=(
"You coordinate communication tasks. "
"Use email_sender for emails and sms_sender for SMS. "
"Delegate to the appropriate specialized agent."
),
tools=[
email_agent.as_tool(
name="email_sender",
description="Send emails to recipients",
arg_name="task",
),
sms_agent.as_tool(
name="sms_sender",
description="Send SMS messages",
arg_name="task",
),
],
)
# Test: Runtime context propagates automatically
print("Test: Send email with runtime context\n")
await coordinator.run(
"Send an email to john@example.com with subject 'Meeting' and body 'See you at 2pm'",
api_token="secret-token-abc",
user_id="user-999",
tenant_id="tenant-acme",
)
print(f"\n[Verification] EmailAgent received kwargs keys: {list(email_agent_kwargs.keys())}")
print(f" - api_token: {'[PRESENT]' if email_agent_kwargs.get('api_token') else '[NOT PROVIDED]'}")
print(f" - user_id: {'[PRESENT]' if email_agent_kwargs.get('user_id') else '[NOT PROVIDED]'}")
print(f" - tenant_id: {'[PRESENT]' if email_agent_kwargs.get('tenant_id') else '[NOT PROVIDED]'}")
print("\n✓ Pattern 2 complete - kwargs automatically propagate through as_tool()")
# Pattern 3: Mixed pattern - hierarchical with middleware processing
# ===================================================================
class AuthContextMiddleware:
"""Middleware that validates and transforms runtime context."""
def __init__(self) -> None:
self.validated_tokens: list[str] = []
async def validate_and_track(
self, context: FunctionInvocationContext, next: Callable[[FunctionInvocationContext], Awaitable[None]]
) -> None:
"""Validate API token and track usage."""
api_token = context.kwargs.get("api_token")
if api_token:
# Simulate token validation
if api_token.startswith("valid-"):
print("[AuthMiddleware] Token validated successfully")
self.validated_tokens.append(api_token)
else:
print("[AuthMiddleware] Token validation failed")
# Could set context.terminate = True to block execution
else:
print("[AuthMiddleware] No API token provided")
await next(context)
@ai_function
async def protected_operation(operation: Annotated[str, Field(description="Operation to perform")]) -> str:
"""Protected operation that requires authentication."""
return f"Executed protected operation: {operation}"
async def pattern_3_hierarchical_with_middleware() -> None:
"""Pattern 3: Hierarchical agents with middleware processing at each level."""
print("\n" + "=" * 70)
print("PATTERN 3: Hierarchical with Middleware Processing")
print("=" * 70)
print("Use case: Multi-level validation/transformation of runtime context")
print()
auth_middleware = AuthContextMiddleware()
client = OpenAIChatClient(model_id="gpt-4o-mini")
# Sub-agent with validation middleware
protected_agent = client.as_agent(
name="protected_agent",
instructions="You perform protected operations that require authentication.",
tools=[protected_operation],
middleware=[auth_middleware.validate_and_track],
)
# Coordinator delegates to protected agent
coordinator = client.as_agent(
name="coordinator",
instructions="You coordinate protected operations. Delegate to protected_executor.",
tools=[
protected_agent.as_tool(
name="protected_executor",
description="Execute protected operations",
)
],
)
# Test with valid token
print("Test 1: Valid token\n")
await coordinator.run(
"Execute operation: backup_database",
api_token="valid-token-xyz-789",
user_id="admin-123",
)
# Test with invalid token
print("\nTest 2: Invalid token\n")
await coordinator.run(
"Execute operation: delete_records",
api_token="invalid-token-bad",
user_id="user-456",
)
print(f"\n[Validation Summary] Validated tokens: {len(auth_middleware.validated_tokens)}")
print("✓ Pattern 3 complete - Middleware can validate/transform context at each level")
async def main() -> None:
"""Demonstrate all runtime context delegation patterns."""
print("=" * 70)
print("Runtime Context Delegation Patterns Demo")
print("=" * 70)
print()
# Run Pattern 1
await pattern_1_single_agent_with_closure()
# Run Pattern 2
await pattern_2_hierarchical_with_kwargs_propagation()
# Run Pattern 3
await pattern_3_hierarchical_with_middleware()
if __name__ == "__main__":
asyncio.run(main())