--- status: proposed contact: dmytrostruk date: 2025-12-12 deciders: dmytrostruk, markwallace-microsoft, eavanvalkenburg, giles17 --- # Create/Get Agent API ## Context and Problem Statement There is a misalignment between the create/get agent API in the .NET and Python implementations. In .NET, the `CreateAIAgent` method can create either a local instance of an agent or a remote instance if the backend provider supports it. For remote agents, once the agent is created, you can retrieve an existing remote agent by using the `GetAIAgent` method. If a backend provider doesn't support remote agents, `CreateAIAgent` just initializes a new local agent instance and `GetAIAgent` is not available. There is also a `BuildAIAgent` method, which is an extension for the `ChatClientBuilder` class from `Microsoft.Extensions.AI`. It builds pipelines of `IChatClient` instances with an `IServiceProvider`. This functionality does not exist in Python, so `BuildAIAgent` is out of scope. In Python, there is only one `create_agent` method, which always creates a local instance of the agent. If the backend provider supports remote agents, the remote agent is created only on the first `agent.run()` invocation. Below is a short summary of different providers and their APIs in .NET: | Package | Method | Behavior | Python support | |---|---|---|---| | Microsoft.Agents.AI | `CreateAIAgent` (based on `IChatClient`) | Creates a local instance of `ChatClientAgent`. | Yes (`create_agent` in `BaseChatClient`). | | Microsoft.Agents.AI.Anthropic | `CreateAIAgent` (based on `IBetaService` and `IAnthropicClient`) | Creates a local instance of `ChatClientAgent`. | Yes (`AnthropicClient` inherits `BaseChatClient`, which exposes `create_agent`). | | Microsoft.Agents.AI.AzureAI (V2) | `GetAIAgent` (based on `AIProjectClient` with `AgentReference`) | Creates a local instance of `ChatClientAgent`. | Partial (Python uses `create_agent` from `BaseChatClient`). | | Microsoft.Agents.AI.AzureAI (V2) | `GetAIAgent`/`GetAIAgentAsync` (with `Name`/`ChatClientAgentOptions`) | Fetches `AgentRecord` via HTTP, then creates a local `ChatClientAgent` instance. | No | | Microsoft.Agents.AI.AzureAI (V2) | `CreateAIAgent`/`CreateAIAgentAsync` (based on `AIProjectClient`) | Creates a remote agent first, then wraps it into a local `ChatClientAgent` instance. | No | | Microsoft.Agents.AI.AzureAI.Persistent (V1) | `GetAIAgent` (based on `PersistentAgentsClient` with `PersistentAgent`) | Creates a local instance of `ChatClientAgent`. | Partial (Python uses `create_agent` from `BaseChatClient`). | | Microsoft.Agents.AI.AzureAI.Persistent (V1) | `GetAIAgent`/`GetAIAgentAsync` (with `AgentId`) | Fetches `PersistentAgent` via HTTP, then creates a local `ChatClientAgent` instance. | No | | Microsoft.Agents.AI.AzureAI.Persistent (V1) | `CreateAIAgent`/`CreateAIAgentAsync` | Creates a remote agent first, then wraps it into a local `ChatClientAgent` instance. | No | | Microsoft.Agents.AI.OpenAI | `GetAIAgent` (based on `AssistantClient` with `Assistant`) | Creates a local instance of `ChatClientAgent`. | Partial (Python uses `create_agent` from `BaseChatClient`). | | Microsoft.Agents.AI.OpenAI | `GetAIAgent`/`GetAIAgentAsync` (with `AgentId`) | Fetches `Assistant` via HTTP, then creates a local `ChatClientAgent` instance. | No | | Microsoft.Agents.AI.OpenAI | `CreateAIAgent`/`CreateAIAgentAsync` (based on `AssistantClient`) | Creates a remote agent first, then wraps it into a local `ChatClientAgent` instance. | No | | Microsoft.Agents.AI.OpenAI | `CreateAIAgent` (based on `ChatClient`) | Creates a local instance of `ChatClientAgent`. | Yes (`create_agent` in `BaseChatClient`). | | Microsoft.Agents.AI.OpenAI | `CreateAIAgent` (based on `OpenAIResponseClient`) | Creates a local instance of `ChatClientAgent`. | Yes (`create_agent` in `BaseChatClient`). | Another difference between Python and .NET implementation is that in .NET `CreateAIAgent`/`GetAIAgent` methods are implemented as extension methods based on underlying SDK client, like `AIProjectClient` from Azure AI or `AssistantClient` from OpenAI: ```csharp // Definition public static ChatClientAgent CreateAIAgent( this AIProjectClient aiProjectClient, string name, string model, string instructions, string? description = null, IList? tools = null, Func? clientFactory = null, IServiceProvider? services = null, CancellationToken cancellationToken = default) { } // Usage AIProjectClient aiProjectClient = new(new Uri(endpoint), new AzureCliCredential()); // Initialization of underlying SDK client var newAgent = await aiProjectClient.CreateAIAgentAsync(name: AgentName, model: deploymentName, instructions: AgentInstructions, tools: [tool]); // ChatClientAgent creation from underlying SDK client // Alternative usage (same as extension method, just explicit syntax) var newAgent = await AzureAIProjectChatClientExtensions.CreateAIAgentAsync( aiProjectClient, name: AgentName, model: deploymentName, instructions: AgentInstructions, tools: [tool]); ``` Python doesn't support extension methods. Currently `create_agent` method is defined on `BaseChatClient`, but this method only creates a local instance of `ChatAgent` and it can't create remote agents for providers that support it for a couple of reasons: - It's defined as non-async. - `BaseChatClient` implementation is stateful for providers like Azure AI or OpenAI Assistants. The implementation stores agent/assistant metadata like `AgentId` and `AgentName`, so currently it's not possible to create different instances of `ChatAgent` from a single `BaseChatClient` in case if the implementation is stateful. ## Decision Drivers - API should be aligned between .NET and Python. - API should be intuitive and consistent between backend providers in .NET and Python. ## Considered Options Add missing implementations on the Python side. This should include the following: ### agent-framework-azure-ai (both V1 and V2) - Add a `get_agent` method that accepts an underlying SDK agent instance and creates a local instance of `ChatAgent`. - Add a `get_agent` method that accepts an agent identifier, performs an additional HTTP request to fetch agent data, and then creates a local instance of `ChatAgent`. - Override the `create_agent` method from `BaseChatClient` to create a remote agent instance and wrap it into a local `ChatAgent`. .NET: ```csharp var agent1 = new AIProjectClient(...).GetAIAgent(agentInstanceFromSdkType); // Creates a local ChatClientAgent instance from Azure.AI.Projects.OpenAI.AgentReference var agent2 = new AIProjectClient(...).GetAIAgent(agentName); // Fetches agent data, creates a local ChatClientAgent instance var agent3 = new AIProjectClient(...).CreateAIAgent(...); // Creates a remote agent, returns a local ChatClientAgent instance ``` ### agent-framework-core (OpenAI Assistants) - Add a `get_agent` method that accepts an underlying SDK agent instance and creates a local instance of `ChatAgent`. - Add a `get_agent` method that accepts an agent name, performs an additional HTTP request to fetch agent data, and then creates a local instance of `ChatAgent`. - Override the `create_agent` method from `BaseChatClient` to create a remote agent instance and wrap it into a local `ChatAgent`. .NET: ```csharp var agent1 = new AssistantClient(...).GetAIAgent(agentInstanceFromSdkType); // Creates a local ChatClientAgent instance from OpenAI.Assistants.Assistant var agent2 = new AssistantClient(...).GetAIAgent(agentId); // Fetches agent data, creates a local ChatClientAgent instance var agent3 = new AssistantClient(...).CreateAIAgent(...); // Creates a remote agent, returns a local ChatClientAgent instance ``` ### Possible Python implementations Methods like `create_agent` and `get_agent` should be implemented separately or defined on some stateless component that will allow to create multiple agents from the same instance/place. Possible options: #### Option 1: Module-level functions Implement free functions in the provider package that accept the underlying SDK client as the first argument (similar to .NET extension methods, but expressed in Python). Example: ```python from agent_framework.azure import create_agent, get_agent ai_project_client = AIProjectClient(...) # Creates a remote agent first, then returns a local ChatAgent wrapper created_agent = await create_agent( ai_project_client, name="", instructions="", tools=[tool], ) # Gets an existing remote agent and returns a local ChatAgent wrapper first_agent = await get_agent(ai_project_client, agent_id=agent_id) # Wraps an SDK agent instance (no extra HTTP call) second_agent = get_agent(ai_project_client, agent_reference) ``` Pros: - Naturally supports async `create_agent` / `get_agent`. - Supports multiple agents per SDK client. - Closest conceptual match to .NET extension methods while staying Pythonic. Cons: - Discoverability is lower (users need to know where the functions live). - Verbose when creating multiple agents (client must be passed every time): ```python agent1 = await azure_agents.create_agent(client, name="Agent1", ...) agent2 = await azure_agents.create_agent(client, name="Agent2", ...) ``` #### Option 2: Provider object Introduce a dedicated provider type that is constructed from the underlying SDK client, and exposes async `create_agent` / `get_agent` methods. Example: ```python from agent_framework.azure import AzureAIAgentProvider ai_project_client = AIProjectClient(...) provider = AzureAIAgentProvider(ai_project_client) agent = await provider.create_agent( name="", instructions="", tools=[tool], ) agent = await provider.get_agent(agent_id=agent_id) agent = provider.get_agent(agent_reference=agent_reference) ``` Pros: - High discoverability and clear grouping of related behavior. - Keeps SDK clients unchanged and supports multiple agents per SDK client. - Concise when creating multiple agents (client passed once): ```python provider = AzureAIAgentProvider(ai_project_client) agent1 = await provider.create_agent(name="Agent1", ...) agent2 = await provider.create_agent(name="Agent2", ...) ``` Cons: - Adds a new public concept/type for users to learn. #### Option 3: Inheritance (SDK client subclass) Create a subclass of the underlying SDK client and add `create_agent` / `get_agent` methods. Example: ```python class ExtendedAIProjectClient(AIProjectClient): async def create_agent(self, *, name: str, model: str, instructions: str, **kwargs) -> ChatAgent: ... async def get_agent(self, *, agent_id: str | None = None, sdk_agent=None, **kwargs) -> ChatAgent: ... client = ExtendedAIProjectClient(...) agent = await client.create_agent(name="", instructions="") ``` Pros: - Discoverable and ergonomic call sites. - Mirrors the .NET “methods on the client” feeling. Cons: - Many SDK clients are not designed for inheritance; SDK upgrades can break subclasses. - Users must opt into subclass everywhere. - Typing/initialization can be tricky if the SDK client has non-trivial constructors. #### Option 4: Monkey patching Attach `create_agent` / `get_agent` methods to an SDK client class (or instance) at runtime. Example: ```python def _create_agent(self, *, name: str, model: str, instructions: str, **kwargs) -> ChatAgent: ... AIProjectClient.create_agent = _create_agent # monkey patch ``` Pros: - Produces “extension method-like” call sites without wrappers or subclasses. Cons: - Fragile across SDK updates and difficult to type-check. - Surprising behavior (global side effects), potential conflicts across packages. - Harder to support/debug, especially in larger apps and test suites. ## Decision Outcome Implement `create_agent`/`get_agent`/`as_agent` API via **Option 2: Provider object**. ### Rationale | Aspect | Option 1 (Functions) | Option 2 (Provider) | |--------|----------------------|---------------------| | Multiple implementations | One package may contain V1, V2, and other agent types. Function names like `create_agent` become ambiguous - which agent type does it create? | Each provider class is explicit: `AzureAIAgentsProvider` vs `AzureAIProjectAgentProvider` | | Discoverability | Users must know to import specific functions from the package | IDE autocomplete on provider instance shows all available methods | | Client reuse | SDK client must be passed to every function call: `create_agent(client, ...)`, `get_agent(client, ...)` | SDK client passed once at construction: `provider = Provider(client)` | **Option 1 example:** ```python from agent_framework.azure import create_agent, get_agent agent1 = await create_agent(client, name="Agent1", ...) # Which agent type, V1 or V2? agent2 = await create_agent(client, name="Agent2", ...) # Repetitive client passing ``` **Option 2 example:** ```python from agent_framework.azure import AzureAIProjectAgentProvider provider = AzureAIProjectAgentProvider(client) # Clear which service, client passed once agent1 = await provider.create_agent(name="Agent1", ...) agent2 = await provider.create_agent(name="Agent2", ...) ``` ### Method Naming | Operation | Python | .NET | Async | |-----------|--------|------|-------| | Create on service | `create_agent()` | `CreateAIAgent()` | Yes | | Get from service | `get_agent(id=...)` | `GetAIAgent(agentId)` | Yes | | Wrap SDK object | `as_agent(reference)` | `AsAIAgent(agentInstance)` | No | The method names (`create_agent`, `get_agent`) do not explicitly mention "service" or "remote" because: - In Python, the provider class name explicitly identifies the service (`AzureAIAgentsProvider`, `OpenAIAssistantProvider`), making additional qualifiers in method names redundant. - In .NET, these are extension methods on `AIProjectClient` or `AssistantClient`, which already imply service operations. ### Provider Class Naming | Package | Provider Class | SDK Client | Service | |---------|---------------|------------|---------| | `agent_framework.azure` | `AzureAIProjectAgentProvider` | `AIProjectClient` | Azure AI Agent Service, based on Responses API (V2) | | `agent_framework.azure` | `AzureAIAgentsProvider` | `AgentsClient` | Azure AI Agent Service (V1) | | `agent_framework.openai` | `OpenAIAssistantProvider` | `AsyncOpenAI` | OpenAI Assistants API | > **Note:** Azure AI naming is temporary. Final naming will be updated according to Azure AI / Microsoft Foundry renaming decisions. ### Usage Examples #### Azure AI Agent Service V2 (based on Responses API) ```python from agent_framework.azure import AzureAIProjectAgentProvider from azure.ai.projects import AIProjectClient client = AIProjectClient(endpoint, credential) provider = AzureAIProjectAgentProvider(client) # Create new agent on service agent = await provider.create_agent(name="MyAgent", model="gpt-4", instructions="...") # Get existing agent by name agent = await provider.get_agent(agent_name="MyAgent") # Wrap already-fetched SDK object (no HTTP calls) agent_ref = await client.agents.get("MyAgent") agent = provider.as_agent(agent_ref) ``` #### Azure AI Persistent Agents V1 ```python from agent_framework.azure import AzureAIAgentsProvider from azure.ai.agents import AgentsClient client = AgentsClient(endpoint, credential) provider = AzureAIAgentsProvider(client) agent = await provider.create_agent(name="MyAgent", model="gpt-4", instructions="...") agent = await provider.get_agent(agent_id="persistent-agent-456") agent = provider.as_agent(persistent_agent) ``` #### OpenAI Assistants ```python from agent_framework.openai import OpenAIAssistantProvider from openai import OpenAI client = OpenAI() provider = OpenAIAssistantProvider(client) agent = await provider.create_agent(name="MyAssistant", model="gpt-4", instructions="...") agent = await provider.get_agent(assistant_id="asst_123") agent = provider.as_agent(assistant) ``` #### Local-Only Agents (No Provider) Current method `create_agent` (python) / `CreateAIAgent` (.NET) can be renamed to `as_agent` (python) / `AsAIAgent` (.NET) to emphasize the conversion logic rather than creation/initialization logic and to avoid collision with `create_agent` method for remote calls. ```python from agent_framework import ChatAgent from agent_framework.openai import OpenAIChatClient # Convert chat client to ChatAgent (no remote service involved) client = OpenAIChatClient(model="gpt-4") agent = client.as_agent(name="LocalAgent", instructions="...") # instead of create_agent ``` ### Adding New Agent Types Python: 1. Create provider class in appropriate package. 2. Implement `create_agent`, `get_agent`, `as_agent` as applicable. .NET: 1. Create static class for extension methods. 2. Implement `CreateAIAgentAsync`, `GetAIAgentAsync`, `AsAIAgent` as applicable.